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FOREWORD

When hydrocarbons are lost from a well during a blowout, methods for estimating
the lost volumes are often needed by both industry and government. This publica-
tion provides the currently accepted calculation methods for gas blowouts and
proposes some methods which need further definition.

This work was funded by the Research and Development Program for Outer Continental
Shelf Qi1 and Gas Operations of the U.S. Geological Survey in cooperation with
Bartlesville Energy Technology Center (BETC) of the U.S. Department of Energy.
BETC provided contracting, monitoring and technology transfer through its Drilling
Technology Program.

A similar work effort is being performed by the same contractor to assess the
technology for estimating liquid hydrocarbon volumes lost during blowouts.

John B. Gregory C. Ray Williams

Research Program Manager Project Manager

0CS 071 and Gas Operations Drilling and Offshore Technology
U.S.G.S., Reston, VA Bartlesville Energy Technology Center

U. S. Department of Energy
Bartlesville, OK




ABSTRACT

Several methods are presented for determining
vented volumes during gas well blowouts., The
methods described apply to gas production in
which no liquids phase(s), hydrocarbon and/or
water, are present in the gas. Each method

is illustrated with a numerical example, Sensi-
ﬂivity analyses provide estimates of probable
errors. The method of'crossplotting formation
and flow string resistances is the only one
which does not requife special measurements.
It is therefore applicable to cratered wells
and underwater blowouts. The report includes
several suggestions for investigations which

might lead to better methods.
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SECTION 1
INDUSTRY SURVEY

1.1 Introduction

A survey of several major oil companies, indepen-
dents and companies which service the petroleum industry
reveals no standard method for estimating amounts of gas
lost during blowouts, Discussions during the survey
made it apparent that, owing to the varied conditions of
blowouts, there can not be a standard method, The me-
thods reported in current use can be broadly categorized
as:

2 Guesstimates

3 Engineering Calculations
.4 Direct Measurements

5 Extrapolations

Each of these methods has its advantages and limitations,

They are briefly described in this section and treatead
in detail in other sections of this report,

1.2 Guesstimates

The widest margin of error probably occurs with
techniques based mainly on intuition or experience,
assisted only by crude measurements with no assoclated
calculations which are usually influenced consciously
or unconsciously by parameters such as height oI the
flame, noise level, deflection of a sledge hammer handle
placed in the gas flow stream, etc, These are classi-
fied as guesstimates. The purpose of guesstimates is
usually to establish an order of magnitude and not to
provide precise values for engineering or economic de-
terminations. They are used primarily to size equip-
ment to be used in bringing the well under control and
are certainly subject to considerable error,

The technique, which is highly individualized and
in some cases surprisingly accurate, depends mainly on
the experience and background of the guesser. In times
past when flaring was more prevalent and regulations
more lax, many people developed a good intuitive feeling
for blowout flow rates by comparison with past jets or
flares of reasonably well known rates. However, the
passing of time and the scarcity of intentional flaring
has diminished this intuitive feeling substantially
within the industry., Although it is conceivable that
they exist, no calibration curves relating vented volume
with such things as flare height, noise level, heat in-
tensity or hammer handle deflection were uncovered in




the literature or during the industry survey.

Depending on circumstances, surface conditions,
personal danger, and the ability to position measuring
equipment into the flow stream, a guesstimate may be
the only approach to obtain vented volumes, However,
under certain conditions, more accurate estimates may
be made., The details of some of these techniques out-~
lined below are further discussed in other sections of
this report,

1.3 Engineering Calculations

If certain data are available or can be reasonably
estimated, fluid flow calculations can bracket the ven-
ted flow rates between maximum and minimum values., Of
course, where more is known about the several para-
meters, particularly the more sensitive ones, the bracket
range is reduced,

For the reservoir, the more important data include
static reservoir pressure, productive stratum thickness,
permeability, gas viscosity and reservoir temperature,
For the flow string, the more important data include the
geometry of the well bore flow path, €.8., through drill
pipe or through the annulus, depth, gas specific gra-
vity, reservoir temperature, and surface well head pres-
sure, From these and other data it is possible to cal-
culate separately the pressure losses in the formation
(Section 7) and in the flow string (Section 8).

A simultaneous consideration of these yields a value of
the uncertainties in the several variables and the man-
ner in which they enter into the calculations provides

a measure of the uncertainty in the estimated flow rate,

In some cases, where there is an appreciable de-
cline in reservoir pressure during the blowout, the
material balance method can be used to estimate the
volume of vented gas. The use and limitations of this
method are presented in Section 2.

1,4 Direct Measurement

The most accurate technique of estimating vented
gas - is that of making measurements of the gas flow rate
during the blowout, There are however, several obvious
limitations. First, it is necessary to have the proper
surface facilities to allow measurements to be made,
i.e,, diverter line and pressure taps; and a reasonably
safe condition must exist to allow personnel to make
the measurements. In many cases the choke lines, di-
verter lines and other surface facilities are destroyed
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or rendered unusable by the blowout or a subsequent
fire and measurements are impossible. “TIn many of the
remaining cases, it is just too dangerous to approach
the well to make the necessary measurements.

In the Arkoma Basin, where wells are commonly
drilled with air, many prolific gas zones are drilled
into with no mud in the hole thereby creating a condi-
tion of uncontrolled blowout for some period until the
well is filled with mud., It is standard practice there
to gauge the gas being vented by placing a Pitot tube
in the flow stream for higher flow rate wells and by
using a portable orifice tester for the lower rate wells,
A discussion of the pitot tube and other direct measure-
ment techniques is included in Sections 3 and 4,

1.5 Extrapolations

In some cases, the blowout is partially contained
and emergency gas sales are made while steps are taken
to bring the well completely under control, It usually
takes considerable time to accomplish this during which
a reasonable decline curve may be established. This
decline curve may be extrapolated back to the initial
time of the blowout to approximate initial flow rate.,
The amount of gas lost is then mathematically esti-
mated by formulas such as:

q:-q
Q= 2t (1.1)
a
where:
Q@ = gas volume produced between 43 and d¢, SCF
gy = initial gas flow rate, SCF/day
4 = gas flow rate at time t, SCF/day
a = decline factor, t~!, days~!

The extrapolation method will be discussed in more
detail in Section 5 and followed by a discussion of
limitations and error ranges.




SECTION 2
MATERIAL BALANCE METHODS

2.1 Introduction

For gas blowouts in which there is an appreciable
drop in reservoir pressure during the blowout, the
material balance method can in some instances be used
to estimate the volume of vented gas. The pressure
drop during the blowout should be a minimum of about
five per cent of the initial pressure. Also, use of
the material balance method is generally, but not ex-
clusively, limited to volumetric gas reservoirs, i.e,,
those without water drive.

The principle underlying the material balance
method for gas reservoirs is quite simple. For ideal
gas behavior and reservoirs with no Pressure support
mechanizms, e.g., water influx, the fracticn of the
reservoir gas produced and/or lost during a blowout
is equal to the fractional loss in reservoir pressure,.
In its applicaticen, however, there are a number of
complex aspects which should be carefully considered.
Where the gas in place at start of blowout is deter-
mined by the volumetric method, consideration should
be given to the accuracy of the several data required.

2.2 Theory and Formulas

Application of the material balance method to
determine vented gas requires first a determination of
the reservoir gas in place at the start of blowout.
Where there is sufficient pressure production history
for the reservoir, the material balance method may be
used. The following formula, Eq. (1.30) of Ref. 2.1
is a form of the material balance for gas reservoirs
which have no water influx and from which no formation
water is produced.

pspo _ piV _ pr - (2.1)
T Tz T z. T )
sc i'p fr

in which

p & T = standard temperature and pressure,
scC sc - .
degrees Rankine and psia.
Gp = standard cubic feet of gas produced

during reservoir pressure drop (Pj=Pp).
initial and final average reservoir
pressures, psia.

H

1T
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Tr reservoir temperature, degrees Rankine,
Zi1%¢ gas deviation factors at temperature T,

and pressures p; and Dg, dimensionless,
v = reservoir hydrocarbon pore volume HCFPV,

cubic feet,

1nou

The hydrocarbon pore volume can also be determined
by the volumetric method where the necessary data are
available, The following formula applies.

V = 43,560 x Vb x ¢ x (l—SW) (2.2)
where V = hydrocarbon pore volume, cubic feet
V, = reservoir bulk volume, acre-feet,
¢ = average reservoir porosity, fraction of pore
volume,
S, = average connate water saturation, fraction

of pore volume,

Once the hydrocarbon pore volume has been obtained
by either method, the gas in place at any pressure can
be found using the following formula:

p X Tsc

z x T_xp
r sc

(2.3)

where G

standard cubic feet, SCF of gas in

the reservoir at pressure p
hydrocarbon pore volume, cubic feet
average reservoir pressure, psia
reservoir temperature, degrees Rankine
gas deviation factor at p and Tpo
standard temperature and pressure,
degrees Rankine and psia.

H N T <

ftonou N

sc?Psc

Finally, then, the vented gas volume is calculated
as the difference between the gas in place G; at start
of blowout when reservoir pressure was P;j, and the gas
in place Gf at end of blowout when pressure is Pg, less
any produced gas Gp by other wells during the blowout,
or,

Gp(blowout) = Gi - Gf— Gp (2.4)

2,3 Example Using the Material Balance Method

To illustrate the use of the material balance me-
thod, example 2.1 considers a gas reservoir with no
water drive in which the discovery well Smith No. 1
had been producing long enough prior to the blowout in
Smith No., 2 so that the material balance method could
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be used to determine the reservoir's hydrocarbon pore
volume, using Eq. (2.1). Data were also available to
make an independent determination of the hydrocarbon
pore volume using Eq. (2.2), Using both of these de-
terminations, the volumes of vented gas during the

61 day blowout in Smith No. 2 are calculated, making
allowance for the continued production from Smith

No. 1 during the blowout,

Example 2,1

Data

9,000 psigmmcmmeeaaa Initial reservoir pressure, measured
in Smith No, 1 producing well

8,000 psigmemememea—-a Reservoir pressure at start of blow-
out, based on pressure history of
Smith No., 1

7,400 psig=—m-cemmecen Reservoir pressure at end of blowout,

' measured in Smith No, 1
240 F e 700°R, reservoir temperature

1.29 @ 9,000 psia
1.23 @ 8,000 psia-~~Gas deviation factors at 240°F
1.19 @ 7,400 psia

14,7 psia & 60°%F~~--Standard Conditions used

12%x109% SCFeececmcae Smith No, 1 production to start
of blowout

6l daySemmmmcm e Duration of blowout

720%10°% SCFmmmeencn- Smith No., 1 production during blow-
out

2 Omme e e Smith No. 1 formation water pro-

' duction

ZErOmmmm e e Estimated reservoir water influx

76,700 acre-feet=---=Bulk reservoir volume, isopach map

25 per centeweacacaa Average porosity

30 per centemeu——-na Average connate water

13,000 feetmmmmmmann Reservoir depth

12,1 1b/galecmeccuea Mud weight in Smith No, 2 at time

of blowout

Calculations

A-1 Hydrocarbon pore volume (HCPV) calculated by
material balance using Smith No., 1 data, using
Eq. (2.1):

14,7x12x10° 22900 Vyepy 8,000 Vyopy
550 - TI.29%700 " "T.23%700

= 9,4+ 3
VHCPV = 0.503x10°ft
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Gas in place at start of blowout (t=0).
Using Eq. (2.3):
_ _ 9 8,000x520
G(t=0) = 0,503x107%x T 53%x700%x15 .7
= 165,3x10°%SCF
Gas in place at end of blowout (t=61 days)
Using Eq. (2.3):
- _ ' 9 7,400x520
G{t=61) = 0,503x10°x T 19x700%x 167
= 158,1x1023CF
Vented blowout gas from Smith No. 2 using Eq. (2.4):
Gp(blowout) = G{(t=0) - G(t=61) - Gp(Smith No., 1)
= 165,3x10°% - 158,1x10°% - 0.720x10°
= 6,48x10°3CF
Average Smith No., 2 blowout rate
_ 6.48x10°SCF _
qsc = £1 days = 106 MMSCF/D
HCPV by Volumetric Method, using Eq. (2.2):
Vucpy © 43,560xA(ac-ft)x¢x(l-Sw)
= 43,560x76,700x0,25x(1-0.30)
= 0,584x10%f¢
Gas in place at start of blowout (t=0)
Using Eg. (2.3):
_ _ o 8,000x520
G{(t=0) = 0.584x107x T 535 700x15 .7
= 191,9x10%SCF




B-3 Gas in place at end of blowout (t=61 days)
Using Eg. (2.3):

7,400x520
1,19x700x14,.7

G(t=61) = 0,584x10%x

183.6x10°%SCF

B~4 Vented blowout gas from Smith No, 2

Gp(blowout) G(t=0) - G(t=61) - Gp(Smith No, 1)
= 191.9x%x10°-183.6x10%-0,720x10°

= 7,58%x10°%SCF

B-5 Average Smith No, 2 blowout rate

7.58x10°

q

C~1 Reservoir pressure at start of blowout calculated
from Smith No. 2 mud weight

0.052(psi/ft/ppg)xW(ppg)xD(feet)

P

0.052x12.1x13,000

8180 psia

2.4 Critigue of the Example and the Method

If the pressure production data from Smith No, 1
had been inadequate for using a material balance, or
if Smith No, 2 had been the discovery and blowout well,
the material balance method could not have been used to
determine the hydrocarbon pore volume, It could only
be determined if adequate data for the volumetric
method, Eq. (2.2}, were available, In the absence
of pressure data from Smith No., 1 and/or if Smith No,
2 had been the discovery well, reservoir pressure at
start of blowout could only be inferred from the mud
weight (density) and depth as in Part C-1 of Example
2.1. A pressure at the end of the blowout would also
be needed,

Pressures obtained from mud weight and depth are
subject to considerable error. The reservoir pressure
may be higher or lower than that calculated from the
mud weight and depth. If the blowout occurs during




drilling, then the reservoir pressure is greater than
the sum of the hydrostatic mud column pressure and the
0 annular friction loss., Where blowouts occur during
tripping operations, the reservoir pressure is less
than the hydrostatic pressure of the mud column, owing
to a reduction of well pressure below the bit by the
swabbing action as the drill string is hoisted. Where
: the blowout is caused by failure to keep the hole full
O of mud, the reservoir pressure is lower than that cal-
¥ culated from mud weight and depth. In many blowouts,
good values of reservoir pressures are available when
the blowout preventers are closed, i.e., the sum of the
surface pressure gauge reading and the pressure of the
hydrostatic column of mud in the drill pipe.

The main uncertainty in determining the hydro-
carbon pore volume by the material balance method,
Eq. (2.1), derives from uncertainties in the pressures.
From Eg., (2.1) it is seen that the hydrocarbon pore
volume is inversely proportional to the difference
0 (pi/zi=Pf/2¢) For the example this difference 1is

: 9000 8000 _ )
| F5s - Toa3 - 6976-6504 = 472

Léw_

Suppose owing to one of several causes, the pressure
at start of blowout was really 8100 psia. Then

9000 8100 _ )
n s - 1953 = 6976-6585 = 391

i and the resultant value of the hydrocarbon pore volume
using 8100 would be 0.607x10°%Ft?, or 17 per cent larger
than the value calculated using 8000 psia. As the

gas deviation factor at 8100 is a 1little larger than
1.23, the error would be a little bit larger than 17

per cent, A major cause for pressure errors is that

the pressure measured 1in wells may not be the true
average pressure of the reservoir, owing to differential
delpetion of areas of the reservoir,

> Error analysis for the volumetric estimate of the
hydrocarbon pore volume 1is straightforward. As the
ranges of porosity and connate water are somewhat
limited, the major source of error arises from the esti-
mate of the bulk reservoir volume. Where the reservoir
thickness is reasonably uniform, the bulk volume esti-~

e mate is essentially an estimate of the productive area.
In other cases the bulk volume is determined from iso-
pach maps whose validity depends upon the number of
control wells available and geological interpretation.

U
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Assuming the estimate of bulk reservoir volume contains
the major uncertainty, the per cent error in the hydro-
carbon pore volume is that of the uncertainty in the
estimate of bulk reservoir volume.

In the event Eq. (2.1) is used where there is
water influx, calculated hydrocarbon pore volumes will
be larger than the actual, and so will calculated volumes
of gas in place, Thus, the calculated volumes of blowout
gas will be larger than actual. Use of Eq. (2.1) there-
fore sets a maximum value to the vented gas volumes.
Reference 2.2 contains a fuller discussion of the use of
the volumetric and material balance methods on gas reser-
voirs.




K)

D

P T . e ST

4

-11-

SECTION 3
FLOW RATE MEASUREMENTS WITH PITOT TUBES

3,1 Introduction

The Pitot tube can be used to measure gas flow
rates from wells under open flow conditions (Refs,
3,1 and 3.2). It is used to sense the difference
between the dynamic and static pressures in a moving
gas stream, This pressure differential is equal to
the -velocity head and is measured by a suitable de-
vice, The velocity is then determined and used to
evaluate gas flow rates. Although less sophisticated
than other gas flow measurement devices, it is the best
suited device for gas flow measurements during gas well
blowouts, except where a diverter or bleed line has
been installed, As the Pitot tube has been widely and
successfully employed to obtailn "Back-Pressure" test
data on gas wells, many operators are familiar with
its use,

3.2 Description of the Pitot Tube

A sketch of the simple pitot tube, invented by
H, Pitot, is shown in Fig. 3.l. This is sometimes
called an impact tube or stagnation tube., The Pitot
tube in principle is made by bending one leg of a
manometer so that the opening is pointing exactly
against the direction of gas flow., If one end of the
manometer is left open to the atmosphere, the instru-
ment indicates dynamic head, which is the sum of the
static pressure and the pressure exerted by the velo-
city of the gas. The static pressure is measured by
tapping the side of the line and measuring the pres-
sure perpendicular to the line of flow,

A sketch of a combined Pitot and static tube de-
vice is also shown in Fig. 3.1. By this arrangement
the static head is automatically subtracted from the
dynamic head so that the manometer reading is a mea-
sure of the velocity head.

In open flow measurements the Pitot tube is lo-
cated at the open end of the casing as shown also in
Fig. 3.1l. Where the other end of the manometer is left
open to the atmosphere, the manometer reading is a
measure of the velocity head. For small velocity heads
the manometer liquid is water and for larger heads,
mercury., For heads above 20 psi, Bourdon or dead welght
gauges are used.




R
N
3

Pitot
Direction of Flow—-CN _Tube
P
\ "l et ” ]
Static
/Tube
Static Dynamic
I -~ Head Head
| Horrr' o, Ay
Direction of Flow—v—T
Nex <d red
Velocity
I - Head
3
b=
(=
<
S -
3
°
w
N
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Fig. 3.2 Drawing of a
commercially available
Pitot tube (Ref. 3.3).
(Courtesy Chandler

Engineering Company.)
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Figure 3.2 is a drawing of a Pitot tube which is
available commercially (Ref, 3.3). It may be used for
either open or closed flow, For high velocities and
large diameter gas streams the tube shown would need
to be strengthened and provided with a substantial
support to position it in the stream,

3,3 Pitot Tube Formula

For all velocities between zero and sonic velo-
city it can be reasonably assumed that the part of the
main stream which is stopped by the impact tube is
stopped isentropically. Under these conditions it
has been shown {(Ref, 3.,1) that the stream velocity at
the impact tube is given by:

n-1
v = 58,58 E {H%T%: [(P;/Pg) ™ ~1]}08 (3,1)

where
v = velocity at Pitot tube, ft/sec
n = ratio of specific heats of the gas
P; = impact pressure indicated by the tube, psia
P, = gtatic pressure which is gtmospheric pressure
in open subsonic flow, psla
- flowing temperature, °R
= gas gravity, (airzl)
E = efficiency factor which is the ratio between

theoretical and actual velocities,

3.4 Flow Rate Determination

The velocity of gas through a circular pipe or
annuli is not uniformly distributed (Ref., 3.4),
Consequently, to determine the quantity of gas flowing,
an average value for the gas velocity must be obtained.
For approximate work involving circular flow cross secC-
tion, the pitot tube can be located at the center of
the pipe where the maximum velocity exists. The ratio
of the average velocity and the maximum velocity may
be assumed to be 0.862 (Ref. 3.5). The Pitot tube can
also be placed at a point in the circular pipe where
the actual velocity is equal to the average velocity of
the entire cross section. This point is usually assu-
med to be on the circumference of a circle whose radius
is 74 per cent of the radius of the pipe and concentric
with the pipe (Ref. 3.6).
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/ Line of Traverse

VELOCITY PRESSURE OR VELOCITY SCALE

Fig. 3.3. Traverse positions
for four equal areas.

Table I

Distances in Per Cent from Inside Surface to Point of Traverse

Number of
Equal Areas 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

14.6 85.4

6.7 25.0 75,0 93.3

4.5 14.7 29.6.70.4 85.3 95.5

3.4 10.6 19.5 32.3 67.7 80.5 89.4 96.6

2.6 8.3 14.7 22.8 34.2 65.8 77.2 85.3 91.7 97.4

Ul &S W

For more accurate work it is better to make a tra-
verse of the pipe., A traverse is the only recommended
method in annular flow as the position of maximum ve-
locity or the mean velocity is hard to predict. To run
a traverse, the pipe is first divided into a number of
equal areas, a circle at the center and annular rings
around it, as illustrated by Fig. 3.3. Mean diameters
are determined for the annular rings, and where these
cut the line of traverse, points are determined in
which positions the Pitot tube is placed and a reading
made. The two points in the inner circle are located
where the circumference of the circle, having one-half
the area of inner circle, cuts the line of traverse,
Table I gives the distances in per cent from the inside
surface of the pipe to the various positions of the
traverse,

The velocity at each reading position is calcu~-
lated using Eq. (3.1)., The arithmetic mean of these
readings is the average velocity.
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Tn case the above method of running a traverse 1is
impractical or if the flow is annular, several readings
have to be taken on a diameter., The velocity at each
position is calculated and a velocity distribution plot
is constructed. The average velocity is then determined
graphically.

Where velocities are varying, several readings
should be taken over a period of time to obtain average
values, As the Pitot tube reading is correct only when
the tube is exactly parallel to the current of flow
(Ref, 3.4), it may be necessary to rotate the tube with
respect to the pipe axis until a maximum reading is ob-
tained.

The quantity;q of gas flowing through a duct is
obtained as a product of the average velocity V5 and the
duct area A, For a circular duct with inside diameter
D:

q = 0.471 D*v, i—-—s‘-% (3.2)
sc
where:
q = flow rate, MSCF/D
D = inside diameter, inches
Vo = average velocity, ft/sec
P - pressure of flowing gas, psia
T - temperature of flowing gas, °R
Psc standard pressure, psia
T = standard temperature, °R

sC

3.5 Illustrative Example with Error Analysis

The following example illustrates the use of Pitot
tube measurements to calculate the gas flow rate where
gas is blowing out to the atmosphere through 10-3/4 inch
casing. Following the example, error analysis is applied
to evaluate the precision of the measurement,

Example 3,1

Data:

Casing diameter (ToDo)oesosoacansoreacsessoonodeB85 1N
Cas specific gravity (Airz=l)cevevceocnoseonsoaDobb5
Flowing temperature.....o........oo.........0.085°F
Barometric pressure.oa.o.o..a.oo..o.o...°14°65 psia
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Standard temperatUresos.oooeovoccosessconsooooob0?F
Standard PreSBUre.s.ccsecoosasooooeonsonnasnosold,]7 psSia

Pitot tube measurements:

% Diameter Inches From Readings

No, (Table I) Inner Wall psig
1 4,5 O0.44 3.0
2 14,7 1.45 6.0
3 29,6 2.92 8.0
4 70.4 6,93 9,0
5 85.3 8.40 6.0
6 95.5 9.41 2.0

Solution

For n=1.28, n/(n-1)=1.28/(1.28~1)=z4.57 and
(n-1)/n=0,219, Assuming E=1,00, for a Pitot reading
of 3,0 psig, by Eg. (3.1l) the velocity is

545

3.0
v 58058 X 1000{4057 X 0.665[(14065)

i

oaus_J_]}os

R 734 ft/sec

For Piz6.0, 8.0, 9.0, 6.0 and 2.0, the respective
velocities are 1002, 1137, 1195, 1002, and 606 ft/sec,
The average velocity is therefore,

v = 734+1002+1137+1195+1002+606
a ~ 6

v 946 ft/sec

a

Now using Eq, (3.2) to find the flow rate:

2 14,65 520
q 0.471x9,.,85%9.46 x T4 70 X 545

q = 41,000 MSCF/D

In Table II maximum probable errors are assigned to
the parameters of Eqs. (3.1) and (3.2) for Example 3.1.
The probable error introduced into the flow rate by each
of these was calculated as shown in the last column,

The maximum probable error in the flow rate rem
sulting from the werst combination of the individual
errors assigned to the parameters is ~-28% or +11%,

The calculated flowrate for Example 3.1 is 41,000 MSCF/D
bracketed between the extremes of 30,000 and 45,000
MSCF/D,




U

-17-
Table II
Probable Error Probable Errér

Parameter in Parameter In Flow Rate

E -10% -10%

n +10% + 3%

G +10% e 5%

T +509, T 4%

p +10% +10%

3.6 Limitation of the Pitot Tube Application

The Pitot tube application is limited to subsonic
velocity. If the flow is sonic the static pressure
is no longer atmospheric., The value of the static
pressure is then unavaillable unless the side of the pipe
is tapped which is a remote possibility.

The sonilc velocity VS igs expressed in Ref. 3.5 by:
vy = 41,44 [E—(Z-;-E-]"os ft/sec (3.3)

where z is the gas deviation factor, Substituting in
Eq. (3.2)

2
D patstc [HZT]Oﬁ

5 = MSCF/day (3.4)

qs = 19,52
scC

where 95 is the maximum flow rate which could be accu-
rately determined by the Pitot tube.

For the following average flow conditions and gas
properties:

- : - 0 -
Potm 14.7 psia TSC = 60%F n = 1.28 z = 1,00
Py = l4.7 psia T = 60°F G = 0.65

Equation (3.4) becomes:
qg = 625D%? (3.5)

Equation (3.5) is shown as a plot in Fig. 3.4, It in-
dicates that where gas is vented to the atmosphere
through 10 inch diameter casing, as in Example 3.1,
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Fig. 3.4, Limits of flow rate
for using Pitot tubes.

sonic velocity is reached at a flow rate of 62,500
MMSCF/D, As this is far above the 41,000 MSCF/D
calculated in Example 3.1, the use of the Pitot
formulas are valid,
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SECTION 4
MEASUREMENTS IN BLEED LINES

4,1 Introduction

Figures 4.1—4.3 are diagrams of typical choke
manifold assemblies recommended by the American
Petroleum Institute, Ref. 4.1, for various working
pressures. In addition to two or three vent lines
through which flow is controlled by manual and/or
remotely operated adjustable chokes, these systems
contain bleed lines through which well fluids may
be allowed to flow unrestricted to the atmosphere.

Bleed lines are usually straight runs of hori-
zontal pipe, fifty to one hundred feet long and of
a diameter at least that of the choke lines. The
upstream end of the bleed line contains one or two
plug or gate valves and a pressure gauge. The down-
stream end is open to the atmosphere. Where wells
are vented or blowing out through bleed lines, it
is possible to calculate the flow rate from pressure
gauge readings and the length and diameter of the
bleed line. This method of calculating flow rate
can also be applied to diverter or blooie lines where
the lines are equipped with pressure gauges.

REMOTELY OPERATED CHOKE

{ 10 MUD/GAS SEPARATOR
AND/OR PIT

BLOWOUT PREVENTER
STACK OUTLET

T0 AT

OPTIONAL
REMOTELY OPERATED VALVE

—/ 10 MUC/GAS
—_ SEPARATOR
7 ANDAOR PIT

Z 2" nownaL
REMOTELY OPERATED
CHOKE

Fig.4.1.Typical choke manifold assembly for 10,000
and 15,000 psi rated working pressure service,
Courtesy American Petroleum Institute, Ref, 4.1,
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ADJUSTABLE CHOKE TO PIT AND/OR
LY My SEPA‘AT R
——

22" NoMINAL

TO PIT ANO/OR
__ 'MUD/GAS SEPARATOR

— -~

Ly NOMINAL
EMOTELY OPERATED
ADJUSTABLE CHOKE

A

g:o

Fig.. 4.2, Typical choke manifold assembly
for 5000 psi rated working pressure service.
Courtesy American Pet, Institute, Ref. 4.1.

TO PIT AND/OR MUD/GAS SEPARATOR ,

£2" nomnar

BLOWOUT PREVENTER
STACK OUTLET

LEED LINE TO PIT
———— \

43" NOMINAL A

——

I 0 AT ,

£2° noMiNal

Fig.4,.3.Typical choke manifold assembly for 2000
and 3000 psi rated working pressure service.
Courtesy American Petroleum Institute, Ref. 4.1.




¢
!
i
¢
:
b

-01 -

4,2 Bleed Line FLow Calculations

In compressible fluid flow in pipe lines of uni-
form cross section, the effect of friction is to in-
crease the velocity and to decrease the pressure of
the stream. If the pressure drop is sufficiently
high, which is the case in well blowouts through small
diameter pipes, the exit velocity reaches sonic ve-
locity. Although the line discharges to atmospheric
pressure, the outlet pressure is significantly higher.

The sonic velocity v_ at the pipe outlet is
. s
expressed in Ref, 4.2 as:

kz RT

o) o
v, = [ —2—2] (4.1)
where
k = ratio of the specific heats
R = universal gas constant
W = gas molecular weight
z, = gas compressibility factor at outlet tem-

perature TO and pressure p,

Expressing W -din terms of gas specific gravity G,
the absolute temperature T, in °R, and replacing R
by its numerical value, Eq.(4.1) yields for the velocity
in feet per second:

k zO To 0+5
]

G (4.2)

v, = 4l.44]

Hence the flow rate qo in MCF/D at outlet pressure and
temperature

kz T 0-5 L.3)
q, = 19.53 D? [ —¢—] (4.

where D is the line inside diameter in inches.

The flow rate 4, can also be expressed using the
Clinedinst equation, Ref. 4.3, as:

P DSTO Pri 0 Pro b
q. = 7.965 ——F7s— ;1 r ; _.r (4 4)
o P, GLT { 3 = dpP -5 = dpr)
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where
Po = outlet pressure, psia
P. = pseudocritical pressure, psia
f = friction factor
L = pipe length, ft
Pj = inlet pressure, psia, recorded by the gauge,

The integral function

p

r p
r_r

o z dpr

has been evaluated by Nisle and Poettmann, Ref. 4.4,
and are given in Table 4.1,

Equations (4.3) and (4.4) contain two unknown
parameters 9, and P,, The other parameters can be mea-
sured or estimated, The pipe inside diameter D and
pipe roughness e are usually known., Complete turbu-~
lence can be assumed and the friction factor f obtained
from Fig. 4.4, Ref. 4.5, If the temperature T, of the
exiting gas stream can not be measured it must be
estimated. The gas gravity G is likewise estimated or
measured if a gas sample has been obtained,

The equivalent length of valves, if present, is
added to the axial length of the line before substituting
for L in Eq. (4.4). The valves usually used are full
bore gate or plug valves. The friction losses across
these valves when fully open are small and can be pre-
dicted with fair accuracy. The equivalent lengths of
valves are available in the literature, €.8., Ref, 4,6,
or from the manufacturer,

Equations (4.3) and (4.4) are used to construct
a plot of flow rate versus inlet pressure, measured
by the gauge, using a range of assumed values of outlet
pressure D, which are unmeasured., Values of G and
To in Eq. (4.3) must be estimated or measured., From
these and the assumed values of Pg the gas deviation
factor 2, and the ratio of the specific heats can be
determined using Figs, 4.5 (Ref. 4.7), 4.6 (Ref, 4.8)
and 4,7 (Ref. 4,9). Placing these in Eq. (4.3) values
of dy are obtained,

These values of 9y are placed in Eq. (4.4)
together with values of P., Py, D, L, and f, The values
of the second integral in Eq., (4.4) are evaluated using
Table 4.1, leaving only the values of the first integral
to be solved for. Entering Table 4.1 with the values of
these integrals, the values of the upper limits Pp; are
obtained, and finally the values of Pj,
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As a final step, the values of 4, are reduced to
standard conditions using

dge = 9 T T {(4.5)

Now a plot can be made of the flow rate 9g5¢ versus the
inlet pressure P; as measured by the gauge on the bleed
line., From this plot values for the flow rate are ob-
tained for any value of inlet pressure. If the outlet
velocity is subsonic, Py will be atmospheric, and Eq.
(4.4) may be used alone to find the relation between

P; and d,, and using Eq. (4.5) to reduce 95 values to
standard conditions.

4,3 TIllustrative Example

A gas well was vented through two fully-opened
gate valves and a 50 ft, 4 inch schedule 160 bleed line,
A pressure gauge upstream from the valves initially
recorded 1005 psig and 886 psig six days later when
it was brought under control. The method described
in the previous section will be used to calculate the
initial and final flow rates and the gas vented during
the six day blowout, Additional data needed to perform
the calculation include:

Pipe absolute roughness = 0.,0018 inch

Line inside diameter = 3.438 inch

Gas gravity = 0,60

Flow temperature = T7°F

Barometric pressure = 14,62 psia

Standard temperature = 60°F

Standard pressure = 14,7 psia
Solution

(1) Adjusted bleed line length for two wvalves,

L
L

50+2x13x(3.438/12)
57.45 ft,

(2) Gas deviation factor and ratio of specific heats,

Find P. = 672 psia and T, = 358°R from Fig. 4.6
for G = 0.60. For Tg = 77 F, Tp = (77+460)/358 = 1.50.,
For P, = 400 psia, for example, Pn = 400/672 = 0.60.
From Fig. 4.5 25 = 0,94, From Fig. 4.7, k = 1.3,

(3) Friction factor

Relative pipe roughness = 0.,0018/3.438 = 0,00052,
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From Fig. 4.4, for complete turbulence, f = 0,017,
(4) Flow rate
By Eq. (4.3)

19053x(3.438)2(l°3x0.94x537/0560)°$

9

7634 £t3/day at 400 psi and 77°F

9%

By Egq. (4.5)

400 520
sc 7634 x 507 X 537

q

201,000 MSCF/D

201.0 MMSCF/D (Table 4.2 and Fig. 4.7)

(5) Value of inlet pressure

Substitute 9, from (4) and solve for the first
integral of Eq. (4.4). For Py = 400 psia Ppy =
400/672 = 0,60, From Table 4,1 for Tp, = 1,50, for
Pro = 0.60 the value of the second integral of Eq. (4.4)
is 0,18, Note that values in Table 4.1 are to be mul-
tiplied by 1000. Equation (4.4) becomes

672x3.438%x537

7634 = 7,965 x 400x0.60x57.45%x0.017

(A—0.18)

where A is the value of the first integral, which from
the above

A - 10040

1.040, for Tpg = 1.50 by
1.388., Then

Enter Table 4.1 with A
interpolation find Ppj

P; = P.;XP. = 1.388x672 = 932 psia

(6) Repeat the above for a range of assumed values of
outlet pressure Py Taple 4.2 summarizes the inter-
mediate values and provides the data from with the flow
rate at standard condition in plotted versus inlet pres-
sure as shown in Fig. 4.8,

Using Fig. 4.8 the flow rates at 1005 psig (1019,7
psia) and 886 psig (900.7 psia) are, respectively, 235
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Fig. 4.8, Flow rate versus inlet pressure.

Table 4.2
Py 100 200 300 400 500 600 700
Pro 0.149 0.298 0.446 0.595 0.744 0,893 1,042
zZ, 0.99 0,97 0,95 0.94 0.92 0.91 0,90
q, 7835 7755 7675 7634 7552 7511 7470
Pro
0 0.04 0.09 0.18 0.28 0.42 0.57

pri

0.221 0.477 0,739 1.040 1.344 1.690 2.034
ri 0.664 0.976 1.178 1,388 1,602 1.745 1.905
i 446 650 792 932 1076 1173 1280
sc* 52,6 101.4 154.,6 201.0 253.5 302.6 351,1

M .
dgo 1In MMSCF/D.
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and 195 MMSCF/D. Assuming a linear decline in flow rate
for the six day period the vented gas volume is

235+195 .

Q = 5

6 = 1,290 MMSCF

4.4 Limitations and Accuracy of Bleed Line Flow Calculations

The above calculations are limited to the case of
a line of uniform cross section with no area restriction,
This should usually be the case except when a valve is
partially closed. A partially closed valve creates a
throat. With a limited length of the line it is pog-
sible that the flow may be choked at the throat. The si-
tuation becomes somewhat more complex as supersonic flow
might occur at the throat exit. Also with the valve
partially closed it is hard to predict the friction losses
across the valve, the cross section of the flow and the
flow temperature and pressure at the throat. However,
flow rates calculated assuming fully open valves are
maximum estimates.

In the case of uniform lines, the calculated flow
rate accuracy is sensitive to the flow temperature, the
gas gravity and the friction factor as determined by the
pipe roughness. Considering the above numerical example,
let the flow temperature be 177°F instead of 77°F.

The flow rate corresponding to Pi of 1019.7 psig would
be 256 MMSCF/day instead of 235 MMSCF/day. An error of
100 degrees in determining the flow temperature will
only result in an error less than 10 per cent in the
flowrate. This is relatively small because only the
absolute temperature raised to the power of 0.5 appears
in the calculations.

If we cut the pipe roughness down by half, say to
0.0009 inch, the relative roughness and friction factors
are then 0.00026 and 0.0145 respectively, resulting in a
flow rate of 255 MMSCF/day. A 50 per cent error in the
pipe roughness will result in an error in flow rate less
than 10 per cent.

The gas gravity can usually be estimated within
0.1. Should the gas gravity be 0.7 instead of 0.6, a
flow rate of 216 MMSCF/day is calculated. This again
represents an error in flow rate less than 10 per cent,.

The flow temperature, gas gravity and pipe rough-
ness can usually be estimated with accuracy at least
equal to that used in the above discussion. The flow
rate calculated with this method is fairly accurate,
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SECTION 5
EXTRAPOLATION OF MEASURED OPEN FLOW RATES

5.1 Introduction

It is common practice in the petroleum industry
to maintain updated graphical records of producing
rates plotted versus time, among other possible va-
riables. The producing rates may be on well, lease,
reservoir or field bases., Plots of production rate
versus time are called "decline curves" even though
there may be periods of rate increases, The main use
of decline curves is to predict future producing rates
and ultimate recovery by extrapolating past producing
rate history into the future, In the case of well
blowouts, where a period of unmeasured blowout rates is
followed by a period of measured blowout rates, it is
Just as reasonable to extrapolate into the past,

The extrapolation of decline curves, into either
the past or the future may be done by drawing a trend
line or curve through the data from which the extra-
polation is made, Because extrapolation of straight
or nearly straight lines is more reliable than extra-
polating curved lines, an attempt is usually made to
discover a type of plot which produces a straight line,
or one nearly straight. These techniques are discussed
in Ref. 5.1 , and will not be repeated here,

A more objective approach to extrapolation is by
curve fitting in which a variety of mathematical
forms relating flow rate and time is explored to find
the one which fits the data with the smallest deviation.
In this method, as in graphical "eyeball" extrapolation,
it is often observed that the earlier and later por-
tions of the data appear to have different trends.,
In this case, of course, it is reasonable to use the
later portion of the data to forcast future rates, and
the earlier portion to backcast,

5.2 Diverting Blowouts

Blowout wells are often brought under control by
capping. In this procedure a section of pipe con-
taining a full opening valve or valves is positioned
over the flow stream so that it flows through the pipe
section and valve(s). The pipe section is sealed to
the well casing after which closing the valve brings
the well under control,




L

-35-

In some cases it 1s feared that closing the valve
will cause an underground blowout, i.e., gas will flow
from the blowout formation to another, usually much
shallower, formation cr to the surface around (outside
of) the casing. In other cases it is feared that the
casing to which the cap is attached will not withstand
the pressure when the valve is closed, In these cases
ﬁ the capping section is provided with side outlets or
- diverter lines below the valve(s), so that when the
valve is closed, the stream is diverted away from the
well, Now it is possible to place a rig over the well
and using snubbing procedures to get pipe down the well
through which heavy mud or cement may be pumped to kill
the well or to complete it as a producing well,

L

e

A similar situation exists where the blowout pre-
venters are closed and the well blows through diverter
cr blooie lines, whose valves are not closed, as ex-

8 plained above, for fear of casing rupture, failure of
j the blowout preventers, and/or underground blowouts.
In some cases the diverted gas is flared and in others
it is captured for sales., In the former case it is
) possible under some circumstances to estimate flow rate

J from the png§§dre in the diverter or blooie line, as
discussed in Section 4, Where the gas is sold, it is
e _ of course measured. In both of these cases 1t may be
4

some time after start of blowout before flow rates are
measured, and rates during this period can be estimated
using extrapolation techniques.

5.3 Example Tllustrating Extrapolation

2

i Many mathematical forms are used to define decline

: curves: linear, exponential, polynomial, hyperboclic,

f harmonic, etc, The most commonly used form is the ex-
ponential decline, i.e., one in which flow rate declines

o exponentially with time and therefore plots as a straight

line on semilog paper, rate plotted on the log scale,

I Example 5,1 illustrates the extrapolation of measured

! blowout rates to estimate rates prior to the installation
of measurement devices.,

Example 5.1

A diverter installation was completed on a blowing
gas well 18 days after start of blowout. During the
following 25 days gas was flowed into a pipeline while
snubbing operations were in progress to kill the well.
Flow rate data was available for only 10 of the last
25 days before the well was brought under control:

I DAYS 19 21 24 27 29 32 35 37 41 43
MMSCF/D 48,2 49.1 49.2 42.8 45,0 41,9 39.3 36,2 36.7 35.1
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Fig, 5.1, Plot of flow rate data for Example 5.1.

Solution-Graphical

1, Plot the data on semilog paper, Fig. 5.1.
2., Draw a straight line through the data points,
and extrapolate to t=0 and t=50,

Read: q=70.,0 MMSCF/D for t=0 days
g=30,0 MMSCF/D for t=50 days

Solve for q_ and a in q = qoe-at
For t = 0, 70 = qoe-a(O) or g = 70
For t = 50, 30 = 70e~2(%0) 4n4 a4 = 0.017 days~t

3. Vented gas during first 18 days

qo_qm
a
7000-5100
0,017

1120 MMSCF

4, Vented gas during last 25 days
Q= 9y —q%

a
g . 51.0-34,0
® T0.017
Q = 1000 MMSCF
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Solution~Analylical

Use the method of Least Squares to calculate the
equation of the straight line (semilog plot) which best
fits the data. Using qm%@_a as the basic form and
ln g=1n 95+at as the linear equivalent, the Least
Square equations are:

Z1lnq=n ln 9 +alt
£tiln g =1n 9, % t+a I t*

For the example: n=10, Z 1n q=37.385; L t=308; and
L t =10,096, Placing these values 1n the above equa-
tions:

37,385 10 1n qo + 308a

1142.3 = 308 1n 9 + 10096a

These solve to yield q0:67.3 MMSCF/D and a=-0,0151
days_lo Using these values the calculated values of
q(18 day)=51.3 MMSCF/D and q(43 days)=35.2 MMSCF/D.
Then the gas vented during the first 18 days is calcu-
lated as

Q = (67.3-51.3)/0,0151 = 1060 MMSCF

and that during the last 25 days as
Q@ = (51,3-35,2)/0,0151 = 1066 MMSCF.

5.4 Error Analysis

With data of the quantity and quality of that
given in Example 5.1, the calculated vented gas volume
during the first 18 days should be within five percent,
This assumeg that the flow rate is declining during
those first 18 days at the same exponential rate as in
the later 25 days. There is, of course, no assurance
that this is true, although it is a most reasonable
assumption, There are factors which could cause the
flow rate in the early days to be either higher or
lower than the extrapolated values,

The accuracy of the extrapolation may be improved
by fitting a curve to the data, using statistical
techniques such as the method of Least Squares, as
shown in Example 5.,1. Such techniques are also useful
where there are larger and most erratic fluctuations
in the data. They provide an objective calculation of
the best fit of a line or curve to the data points as
opposed to the "eyeball" method,




-38-

Some consideration should Be given to the effect
of installing a diverter line on the well and to the
effect of connpecting the diverter line into a pipe-
line into which the gas must flow against the pre-
vailing pipeline pressure., The calculation methods of
Example 8,1 are available for evaluating the effect

of these,
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Section 6
ESTIMATES FROM BACK PRESSURE TESTS

6.1 Introduction

Extrapolation of back pressure tests of gas wells
at low rates is used in regulatory work to determine
the open flow capacity (rate). The open flow capacity
is the rate at which a well would flow if the flowing
bottom hole pressure were atmospheric, i.e., if there
were no flow string resistance, only formation resis-
tance. Open flow capacities are therefore estimates of
maximum rates during blowouts.

Back pressure testing consist of flowing a well
at several successive rates and measuring at each rate
the flowing bottom hole pressure, the flowing well
head pressure and the flow rate. The static reservoir
pressure is also measured or calculated from measured
static well head pressures. The theory and practice
of back pressure testing is discussed in Refs. 6.1-6.3,

The data from a back pressure test are plotted
on log-log paper with flow rate as abscissa versus the
differences of the squares of the static and flowing
bottom hole absolute pressures. In most cases the data
plot as a straight line, and extrapolate to the open
flow capacity, i.e., flowing bottom hole pressure
equal to atmospheric pressure.

The results of back pressure tests are useful in
calculating the rate at which gas wells can flow against
any surface (back) pressure. With proper caution,
these tests can also be of use in estimating blowout
rates; particularly if a test has been made on a well
which later blew out, or with less precision on a well
using back pressure tests from other wells producing
from the same reservoir.

6.2 Back Pressure Test Theory

The formula for the steady-state, radial flow of
gases in the reservoir in the laminar regime is basic
to most back pressure test theory. It is derived in
Ref., 6.2 as

2 2
703 k h (p_ =P, )

Q5c ~ u T z 1n (re/rw) (6.1)
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Equation (6.1) predicts that a plot of flow rate
versus the difference of the squares of the pressures
on log-log paper will give a straight line whose slope
is 45°, Experience shows that for the data from many
wells this is true, particularly at lower flow rates.
For other wells and at higher flow rates the slope is
usually less than 45° and the formula of Eq., (6.1)
is modified as

2 2,11
703 k h (p_ "-P, )

dgc = u T z 1n (re/rw) (6.2)

The need for the exponent n in Eg., (6.2) is usually
explained by the occurrence of turbulent flow in the
formation., At low flow rates the regime is laminar
and n = 1. At higher rates turbulent flow begins in
the vicinity of the well, where gas velocities are
highest, As flow rate is increased, the turbulent
zone extends further into the formation, and under
open flow conditions a considerable portion of the
drainage area is in turbulent flow,

The back pressure formula is therefore written as
a. = Clp_%-p )" (6.3)

From Eq. (6.2) the coefficient C is a characteristic
of each well and its drainage area, and includes the
geometry (h, 'y and PTy), gas characteristics (u and
z), and formation permeability and temperature (k and
T)., As the values of some of these parameters are
difficult to determine individually, they are grouped
in the coefficient C,

Taking the logarithm of both sides of Eq. (6.3),
it becomes

log q , = log C +n log(pez-pwz) v (6.4)

Figure 6.1 is a typical plot of data taken in a
back pressure test, For a slope of 40%, n=tan 40°=0.839.

Extrapolation from the measured data to a flowing
bottom hole pressure of 14,7 psia yields an open flow
_capacity of 53 MMSCF/D. It should be realized that
the open flow capacity is a theoretical figure used
for practical purposes, by regulatory bodies to deter-

i
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Fig. 6.1. Typical back pressure

data plot with extrapolation to
find open flow capacity pe=1290psia,

mine allowables. The extrapolation assumes the con-
stancy of the exponent n, i.e., an unchanging flow
regime, and also the constancy of flowing temperature,
gas viscosity and gas deviation factor.

In back pressure testing, the flow at a selected
rate should be continued long enough for the reservoir
to closely approach steady state conditions., Whenever
stabilization cannot be reached within a reasonable
period of time because of reservoir conditions, or
when flow rates of sufficient duration to reach sta-
bilized conditions are impractical, the constant time
multipoint test (Refs. 6.5, 6.6 and 6.7) or the isochro-
nal method (Ref. 6.6) should be used. Both methods are
devised to give the coefficient C and the exponent n.
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6,3 Estimation of Blowout Rate from Back Pressure
Tests on the Blowout Well

In the above discussion it was pointed out that
the blowout rate of a gas well will be lower, gene-
rally much lower, than the open flow capacity of the
well because of two factors. One of these is the
increasing importance of turbulence at higher flow
rates, where test dataare usually not taken. The
other is the flow string resistance, which is not in-
cluded in the back pressure test which measures only
formation resistance,

Some idea of the importance of these factors
can be understood from a theoretical study by Elen-
baas and Katz, Ref, 6.3. This study pertained to a
well 5000 feet deep with a static reservoir pressure
of 2100 psia, Flow was through a casing of 6-5/8
inches I.D, The formation porosity was 26 percent for
a Wilcox sand of 48-65 mesh for which permeability and
turbulence characteristics were determined by labo~-
ratory tests. Calculations were placed on one foot of
formation thickness for a gas gravity of 0,65 (Air=1)
and a reservoir temperature of 115°F,

The solid line of Fig. 6.2 is the calculated back
pressure plot, Note that in the low flow rate range
the slope is 45° (n=1.00) and that it increases pro-
gressively through the so called transition (partially
turbulent) range to the almost fully turbulent range
where the slope approaches 60° (n=0.5).

At 50 MMSCF/D the friction of the flow string
caused the flowing bottom hole pressure to be appro=-
ximately 1500 psia. Thus, the blowout rate is de-
termined as 50 MMSCF/D and not some considerably
higher rate, the open flow capacity, taken where
flowing bottom hole pressure is assumed to be atmos~
pheric,

Figure 6.2 also shows the error of extrapolating
back pressure data taken in the laminar or
laminar-turbulent transition range to estimate either
open flow capacities or blowout rates, Although data
taken over a limited range of flow rates usually appears
to be linear on the log-log plot, over a wide range the
data plot as a curve as shown in Fig, 6.2, Table I
gives an idea of the overestimation of blowout rates
from improper extrapolation.

In some back pressure tests the data do not plot
as or near to a straight line on log~-log paper,
In most of these cases the data are usually erratic,
and where four or more data points are available there
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Fig.6.2 Back pressure curve covering laminar
through full turbulent flow in the reservoir.

Table 1
Line (Fig. 4.2) A B o
Est'd Blowout Rate 50 100 300
Percent Overestimation 0 100 600

is no reasonably smooth trend line which can be drawn
through the data. The usual explanation for this be-
havior is formation damage which varies with flow rate.

Graham and Boyd, Ref., 6.4, have shown that back
pressure tests on a number of Gulf Coast wells taken
shortly after completion may not be reliable for pre-
dicting later flow performance, that both the co-
efficient C and the exponent n of Eq. (6.3) may change
during production. These wells were generally found
to have better flow characteristics after weeks or
months of production during which the well was cleaned
of formation damages during drilling and/or completion.

In view of the foregoing it is obvious that back
pressure test data obtained on a well prior to blowout
should be used with caution in estimating the well's
blowout rate., Use of stabilized back pressure data
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without these considerations will generally result
in an overestimation of the blowout rate by as much
as several hundred percent.

6.4 Use of Back Pressure Tests on Other Wells in the
Same Reservoir

Section 6.3 discussed the problems of using back
pressure data on the blowout well to estimate its
subsequent blowout rate., Let us now consider the
-additional difficulty of using back pressure data, not
from the blowout well, but from other wells completed
in the same reservoir,

The flow performance of a gas well depends on
several parameters., These parameters are classified
into two groups. The first group include parameters
which can reasonably be assumed to remain essentially
the same at different wells in the same reservoir,
such as:

l. shut-in pressure

2. reservoir temperature

3. average gas viscosity

4, gas deviation factor
1000
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Fig. 6.3. Back pressure data on 23 wells in
one field. (After Rawlins and Schellhardt,
Ref. 6.1. Courtesy U.S. Bureau of Mines.)
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The second group includes parameters that are more
likely to vary, sometimes drastically. Some of these
parameters are:

1. formation thickness

2. formation permeability
3., formation damage (skin)
4, well stimulation

5. drainage radius

6., effective well radius
7. type of completion

Tt should be expected, therefore, that wells pro-
ducing from the same reservoir will exhibit different
flow characteristics. Figure 6.3 after Rawlins and
Schellhardt (Ref. 6.1), shows the results of back pres-
sure tests on 23 wells in one field, presumably com-
pleted in the same reservoir. Although it is likely
that a study of the available data would explain some
of the differences among the wells, it appears that at
least a ten-fold variation exists in the open flow
capacity of these wells.

6.5 Illustrative Example

A gas well blew out of control for 10 days.
The back pressure equation describing flow in an offset
well where sand thickness averaged 38 feet is

- 2 - 2 Q74
q = 1.24(p "-P, )
where q is in MSCF/D. Assuming the same value of the
exponent for the wild well, its back pressure equation
may be written as

2)0'7‘+

q = Clp 2-p,

From Eqs (6.2) and (6.3) we may write

703 k
u Tz ln(re/rw)

¢
: =

Assuming k, u, T, z, Te and Iy are the same for both
wells, C for the blowout well will be that for the
offset well increased by the ratio of the formation
thicknesses at the two wells. As formation thickness
at the blowout well was determined to be 57 feet,
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Fig. 6.4. Graphical solu-~
tion to illustrative example,

C for the blowout well is calculated as

C = 1.24 x 5% - 1.96

and the calculated back pressure equation for the wild
well is

a4 = 1.96(p 2~p 2)%™

Reservoir pressure at the time of blowout was close to
5200 psia and the flowing bottom hole pressure was

calculated to be 4800 psia at 150,000 MSCF/D using the

methods of Section 8, Thus, the estimated blowout rate
is

£
1

1.96(5200%-48002) 0™

{e]
1

150,000 MSCF/D (150 MMSCF/D)
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Assuming slope of 0,74, at Py = 14,7 psia the open flow
capacity for the blowout well is calculated to be 600
MMSCF/D, and at 4800 psia fiowing bottom hole pressure
150 MMSCF/D.

The graphical solutions for the above calcula-
tions are shown in Fig. 6.4, Also shown are extrapo-
lations assuming complete turbulence 1is reached at a
flowing bottom hole pressure of 4800 psia, i.e., that
n = 0.50, For the blowout well this gives an estimated
blowout rate of 115 MMSCF/D., Thus for 10 days the
vented gas lies between 11.5 and 15.0 MMSCF. These
figures are, of course, subject to large uncertainties.
Tn addition to those introduced in the extrapolation of
back pressure data, in this example we have those of
adapting back pressure data from another well in the
same reservoir., The accuracy of back pressure data is
also open to guestion in some tests. For instance, in
the example presented, the pressure drawdown, Pe-Py,
was 66 psi at 24 MMSCF/D and only 13 psi at the lowest
rate of 7 MMSCF/D, Even where these pressures are mea-
sured with subsurface gauges, small uncertainties
in the static and flowing pressures can cause large
uncertainties in the back pressure curves. For example,
nad the drawdown at 24 MMSCF/D been 70 psi, rather than
66 psi, the slope between the two highest points would
be 0,62 rather than 0.74, the average of 211 points,
Where the pressure is calculated from surface measure-
ments of a static column in an annulus or kill string,
additional uncertainties are introduced.
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SECTION 7
FORMATION RESISTANCE

7.1 Introduction

Flow string resistance and formation resistance
control the amount of escaping gas during a blowout,
Formation resistance occurs as gas flows through the
small, tortuous pore spaces of the reservoir rock to-
ward the wellbore. Flow string resistance occurs as
gas flows up the wellbore toward the surface, These
two resistances act in series, and it cannot be said,
a priori, which is the more dominant.

Techniques are available to estimate the rela-
tionship of the flow rate of the escapling gas to these
two resistances, The procedure follows three basic
steps:

1, Formation resistance

Using an appropriate formula for the flow of
gas in the reservoir, the flow rates are cal-
culated for a range of flowing bottom hole
pressures, A plot of these data such as shown
in Fig, 7.1 is. an expression of the formation
resistance, which involves properties of the
reservoir rock and gas., As indicated, maxi-
mum flow rate occurs for zero bottom hole
pressure, and the rate declines as bottom

hole pressure rises,

2, Flow string resistance

Using appropriate formulas for the flow of gas
through pipes, annuli, etc., a flow rate is
assumed and using a surface flowing pressure
(usually zero psig) the pressure is calculated

at the bottom of the flow string. Other bottom
hole pressures are calculated for a range of
assumed flow rates, the results of which plotted,
as in Fig. 7.1, express the resistance of the
flow string to the flow of gas,

3. Blowout rate

The intersection of the formation and flow string
resistance curves is the calculated blowout rate,
about 55 MMSCF/D for the plots of Fig, 7.1,

Procedures for calculating the formation resistance are
investigated in this section and those for flow string
resistance in Section 8, In Secticn 9 the combination
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Fig,7.l Typical formation and
flow string resistance curves,

of the two procedures to estimate blowout rate(s) is
discussed., Although the calculation techniques are

based on established engineering principles and their

use is straight forward, the results are strongly in-
fluenced by certain pieces of the data, some or all of
which may be subject to large uncertainty. Also the
calculations are laborious and are most appropriately
handled by computers, The computer technique also allows
extensive sensitivity analysis to help bracket data un-
certainties,

7.2 Reservoir Geometry

The relationship of flow rate to pressure drop ex-
perienced by gas as 1t flows through the reservoir rock
is influenced by: reservoir geometry, gas properties,
and reservoir rock properties.

A1l of the calculation procedures used in this re-
port are based on flow systems of radial geometry, such
as shown in Fig. 7.2. In this radial system PW repre-
sents the radius of the wellbore, Pe represents the
outer or external radial boundary of the reservoir, and
h represents the net thickness of the formation, The

value of Yy is commonly taken to be the radius of the




-50-

Fig, 7.2, A radial system of thickness h,
external radius P, and well bore radius I

we

drill bit if gas is flowing into an open hole and is taken
to be the internal radius of the casing if it is flowing
through perforated casing. The value of s is the radius
of the boundary of the reservoir if the reservoir is in-
deed circular, Since no reservoirs are truly radial in
shape and wells may be located off center, an equivalent
radius is normally used, defined as the radius of a cir-
cle whose area is the same as the reservoir, This pro-
cedure has been shown in practice to be a good approx-
imation for most reservoir systems. For the reservoir
area A in acres, the equivalent external radius Py in
feet is:

r. = L43,560 a/n]0% (7.1)

For an area of 125 acres, the equivalent external radius
is:

ro = [43,560%125/3,14]%% = 1316 rt,

7.3 Steady State Flow

One formula which relates the gas flow rate Q5
and the flowing bottom hole pressure pw for radial
Systems is derived as Eq, (6.72) of Ref', 7.1 as:

2 2
q i 703 kh (Pg p.°) 2
SC - °
uTz ln(re/rw)




o

M

i)

-51-

in which

e
]

flow rate in SCF/day at standard conditions
of 14,7 psia and 60°F

reservoir permeability, darcies

reservoir thickness, feet

pressure at radius g, psia

wellbore pressure at ry,, psia

average gas viscosity, centipoise

reservoir temperature, degrees Rankine
average gas deviation factor, dimensionless
ratio of external radius to well bore radius,
dimensionless.
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Equation (7.2) is commonly referred to as a steady
state equation, It assumes the maintenance of pressure
at a value Pg at the external radius e, This would be
the case for active water drive gas reservoirs in which
reservoir pressure is maintained at P,, and for which
Eq. (7.2) would be applicable except for an initial tran-
sient period which is discussed later, The pressure Pg
is the reservoir pressure measured or estimated at the
time of blowout,

Equation (7.2) may be used as shown in Example 7.1
to calculate a formation resistance such as Fig. 7.1,
which shows the relationship between bottom hole pres-
sure and flow rate,

Example 7.1

P, = 4500 psia; P, = 3000 psia; k = 0.064 darcy
h = 15 feet; u = 0,025cp; z = 1,10
r, = 6000 ft; P = 0.333 ft; T = 660°R

&

_ 703x%0,064x15(45002-30002)
Q5¢ © 0.025%x600%x1.10x1n(6000/0.333)

47.0 MMSCF/D

qSC

For Py = 0, 9450 = 85 MMSCF/D., These points are included
in the reservoir curve sghown in Fig. T.1l.

7.4 Error Analysis

The terms in the denominator of Egq. (7.2) can be
evaluated much more precisely than those in the numerator,
A1l of which determine the relationship between the flow
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rate and the bottom hole pressure. Gas deviation fac-
tors and viscosities can be estimated with good preci-
sion using the methods of Ref. 7.2. Reservoir tempera-~
tures can also be estimated with good precision in nearly
all instances,

At first glance, the uncertainty in estimating the
external radius Pe might appear to have a large effect
on the calculation; but because both it and the wellbore
radius, which is also subject to considerable uncertainty,
enter the formula as logarithms, the effect of their
uncertainty is relatively small., This may be illustrated
by considering values of the external radius as twice
(12,000 feet) and half (3,000 feet) the 6,000 foot ra-
dius used in Example 7.l, As 1n(12,000/0,.333) = 10.5,
In(6,000/0.333) = 9.8, and In(3,000/0.,333) = 9.1, it is
seen that a 100 per cent variation in the estimate of
the external radius (or the ratio Pe/PW) produces less
than an 8 per cent variation in the logarithm,

On the other hand, the uncertainty in some of the
other variables, particularly formation thickness and
permeability, may be quite large, sometimes even in
well developed reservoirs whose formation thicknesses
and permeabilities vary widely throughout the reservoir
and are reflected invarying well productivities. 1In
discovery wells, the reservoir permeability can only be
estimated from permeability trends in the area, depth or
knowledge about the particular formation, The forma-
tion thickness may be obtained from driller's logs,
electric or other logs run, but there is uncertainty
about how representative the thickness at the well is
of the whole drainage area. Also, in some instances
the blowout may occur before the producing formation
has been fully penetrated. In any event, the uncer-
tainties in permeability and thickness are reflected
directly in the calculated values of flow rates for
assumed bottom hole pressures, Good estimates of
thickness can be obtained from isopach maps in areas
having good well control,

The effect of uncertainty in the external pressure
pe’ taken to be reservoir pressure at the time of blowout,
varies with the absolute values of both the reservoir
pressure and the assumed bottom hole pressures., For
example, had the external pressure been 4400 psia in-
stead of 4500 psia in Example 7.1, the calculated flow
rate would have been 45 MMSCF/D instead of 47 MMSCF/D,

7.5 Semi-Steady State Flow

Where water drive is absent and after an initial
transient period as mentioned above, the radial gas flow
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formula Eq. (6.81) of Ref, 7.3 applies.

2_, 2
_ 703 kh(Pe "Pu’) (7.3)
d5¢ * UTz 1In(0.61 r_/r_) °
e W

The only difference between Egq. (7.3) and Eq. (7.2) 1is
in the log term., Because of the relative insengitivity
of the log term, as discussed in Sec. T.4, flow rates
calculated using Eq. (7.3) will be only slightly larger
than those using Eq. (7.2). Furthermore , the remarks
of Sec., 7.4 about error analysis apply egually to

Eqo (7.3),

The external pressure Pe in Eq. (7.3) is taken as
the measured or estimated pressure at the start of blow-
out. In the absence of water drive, average reservoir
pressure will decline during the blowout, and therefore
also the external pressure, Where the pressure decline
is small, i.e., where the volume of vented gas is small
in relation to the initial gas in place in the reservoir,
continued use of the initial pressure will cause only a
small overestimate on the blowout rates, and in view of
the other uncertainties, continued use of the initial
pressure may be Jjustified.

Where the pressure decline 1is appreciable, another
semi~steady state formula is applicable, Eq. (6,82} of
Ref, 7.3, or

2 2
703 kh(Pavg Py )

9sc 7 Tz In(0.472 v _/r ) (7.4)

In this equation, the external pressure is replaced by
the average reservoir pressure, pav . Use of this
equation requires a good estimate o% the reservoir's
hydrocarbon pore volume, calculated by Eg. (2.1) or
Eq. (2.2) of Sec, 2 and then the use of Eq. {(2,1)

to calculate the average reservoir pressure, using for
the cumulative produced gas G a summation of the daily
blowout volumes. Example 7.2 illustrates this proce-
dure using the data of Example 7.l and a value for the
hydrocarbon pore volume calculated as shown in Example
2.1

Example 7.2

Po = 4500 psia; k = 0,064 darcy h = 15 feet
r, = 6000 ft; Fyu= 0,333 ft; T = 600°R
W = 0.025cp & z = 1.100 at 4500 psia & 600°R
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u 0.,025cp & 2z = 1,095 at 4461 psia & 600°R

- 6p+3
VHCPV = 340x10°ft

From Fig, 7.1l the initial blowout rate is deter-
mined as 55 MMSCF/D from the intersection of the
formation and flow string resistance curves,
Assuming this rate for 5 days, the cumulative vented
gas after 5 days of blowout is 275 MMSCF, Placing
this value in Eq, (2.1)

14.7x275%10° _ 4500x340x10® _ 340x10°  p
520 ~ 1.10x600 600 z'av

(-g-)avg = 4074 psia

From a plot of 2z vs g for this reservoir gas,

z = 1,095 and

Payg = L-095%X4074 = 4461 psia

This value of pavg may now be used in Eq. (7.4)
to find a new reservoir resistance curve, the dashed
curve of Fig, 7.3, The intersection of this curve and
the flow string resistance curve provides a new and
lower value of the blowout rate, approximately 53 MMSCF/D
as shown in Fig, 7.3. This value may then be assumed to
hold for the next five days, or another selected inter-
val, and the procedure continued,

Where the pressure decline is sufficient for using
the material balance method described in Section 2,
the cumulative vented volumes calculated by both methods
may be compared. The method described by Example 7.2
includes, in addition to the errors discussed in Sec, To4h
the error in estimating the hydrocarbon pore volume and
those introduced in calculating the flow string resis-
tance curve, The latter will be discussed in Section 8,

?

In many cases the reservoir drive mechanism is not
known, It may be active water drive, partial water drive
or volumetric expansion, In this event, the procedures
described in both Secs, 7.3 and 7.4 should be followed,
the results of which bracket the best estimate of the
vented gas volumes, and include the possibility of par-
tial water drive,

7.6 Transient Flow

The methods described in Secs., 7.3 and 7.5 assume
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Fig.7.3. Formation resistance cur-
ves as calculated in Example 7.2,

that the steady-state or semi-steady state pressure dis~
tributions are established in the reservoir in a small
and negligible period of time., The approximate time

to establish these distributions is expressed by Eq.
(6.29) of Ref., T.4 in which the time referred to is
called the readjustment time, or the time for a reservoir
to adjust to steady-state or semi-steady state condi-
tions following a sudden change in flow rate, e.g., a
blowout,

2 2
0.04 ry 0.04uc¢re

tR = n = K (705)
in which

tR = time, days

U = gas viscosity, centipoisg

¢ = gas compressibility, psi~!

¢ = formation porosity, fraction

k = permeability, darcies

r., = reservoir radius, ft

The gas compressibility may be calculated by methods
explained in Ref. 7.5. For the conditions of Example
7.1, and a gas compressibility of 100x10 ®psi”‘'and

g
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a hydrocarbon porosgsity of 20 per cent,

£ o.o4xo.025x100x10'6xo.20x60002
R 0.064

o
i

11 days

For an external radius of 12,000 feet, the corresponding
readjustment time is 44 days. The important variables
affecting the readjustment time for gas reservoirs are
permeability, gas compressibility, and reservoir size,
i.e., rea Gas compressibility decreases with pressure
and therefore also generally with depth. Thus large
readjustment times are to be expected for larger,
shallower (lower pressure) reservoirs and those having
lower permeability,

Equation (7.5) may be alsc used to calculate the
transient drainage radius at any time, i.e,, the radius
beyond which reservoir pressure has not been appreciably
changed up to that time by the blowout or other rate
changes., Inverting Eq. (7.5)

) Kt 00
re = [ﬁtﬁzagaj (7.6)

This value may then be substituted for e in Eq. (7.2)
to yield \ :

q = 703 kh(Pe?.Py2)

sc uTZ(O.S)ln(kt/O.Oéuc¢rw2) (7T.7)

Equation (7.7) may be used to calculate reservoir re-
sistance curves at any time t by procedures illustrated
by Example 7.3,

Example 7.3

Pe = 4500 psia; k = 0.064 darcy; W = 0.025 cp
Cg = 100x10-%psi~!; ¢ = 0,20; r, = 0.333 ft

re = 6000 ft; h = 15 ft; T = 6000R

For PW = 3000 psia:

In EQo (707);

703 kh 703%0,064%x15 ) .
uTz(0.5) ~ 0.025x600%x1.10x0.5 - 81l,8x10
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and
- k/0.04ucér * = 0.064/0.04x0.025x0.20x0.3332
= 28.8
Therefore:
=
_81.8x10°(4500%-Py?)
95¢ * lIn 28.8 t
For Py = 2500 psia, after 1 day of flow
-
: _ 81.8x10°(4500%2-25002)
dsc = In(28.8x1)
Q5. = 66.6 MMSCF/D
r
After 5, 11, 50 and 100 days for Py = 2500 psia,
dee = 60,0, 58.4, 54,3 and 52,5 MMSCF/D, respec-
tively. Other values of Py are assumed to provide
, data points for the curves of Fig. T.4.
o
Figure 7.4 shows the formation resistance or pres-
sure distribution curves for the reservoir of Example
7.3 at 1, 5, 11, 50 and 100 days. It is to be noted
- ‘ that the 11 day curve is the same as the reservoir resis-
. tance curve of Fig, 7.1 and essentially the same as the
) upper curve of Fig. 7.3, the slight difference being
ﬁ caused by the use of 1ln(F¥ /¥, ) in Fig, 7.1 and 1n(0.65

re/Ty) in Fig. 7.3 If the reservoir has an effective
external radius of 6,000 feet as used in Example 7.1,
7.2, and 7.3, and an active water drive to maintain
pressure at its initial value, then the 11 day curve of
Fig, 7.4 may be used for the duration of the blowout,
The effect of an error in the estimated effective exter-
nal radius may be investigated by considering, for

1 example, a value of 12,000 feet, i.e., a reservoir four-
(Y times as large. For this larger reservoir the readjust-
ment time will be 44 days, and yield a steady-state
formation resistance curves slightly above the 50 day
curve of Fig. T.4.

. %5W:»

: If on the other hand, the reservoir is of 6,000

- feet in radius and has no water drive, then, after
' reaching the 11 day curve, the reservoir resistance cur-
ves will begin to change as shown in Fig. 7.3. As with
the water drive reservoir, the effect of a larger external
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Fig.T7.4, Transient formation re-
sistance curves for Example 7.3,

radius, may be investigated., For an effective exter-
nal radius of 12,000 feet, as this would be a reservoir
fourtimes as large as the one of 6,000 feet, upon
reaching semi-steady state performance at 44 days, the
rates of pressure decline would be only one-fourth those
calculated in Example 7.2 and shown in Fig. 7.3,

The intersections of the formaticn resistance
curves with the flow string resistance curve of Fig, 7.4
give the blowout rates during the transient reriod,
varying from 57.2 MMSCF/D at one day after start of blow-
out to 51,6 MMSCF/D after 100 days, For the latter fi-
gure it is assumed that the effective reservoir radius
is at least as large as 18,000 feet which would allow
a transient flow period of 100 days before entering into
steady state or semi-steady state flow,

A plot of the intersections of the curves of Fig, 7.4
yields the lower curve of Fig. 7.5, from which the cu-
mulative vented gas during the transient period is re-
presented by the area under the curve., For an 11 day
transient period the vented gas amounts to about 610
MMSCF, which includes an estimated 60 MMSCF during the
first day. The flatness of the lower curve of Fig, 7.5
may be somewhat surprising to those familiar with flow
rate changes for constant bottom hole pressure,
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The upper curve of Fig. 7.5 shows the flow rate at a
constant bottom hole pressure of 2500 psia, showing
rates much higher, particularly in the early blowout
period, than for the case of declining bottom hole
pressure, which prevails during blowouts,

7.7 Summary and Commentary

Methods have been presented in the foregoing by
which the formation resistance curves may be calculated.
Where there is doubt whether the reservoir has active,
partial or no water drive, calculations should be made
for cases of both active and no water drive. Similarly,
the effect of effective reservoir radius and initial pres-
sures should be investigated to help bracket the forma-
tion resistance curves. Use of computer programs is
recommended to facilitate the investigation of different
cases and variable sensitivity.

Reservoir permeability and thickness were cited as
parameters in the formulas to which the calculated for-
mation resistance curves are most sensitive. These pa-
rameters are unfortunately also the ones whose values
are known with the least certainty. They are often
used as one variable, the kh product to which the term
capacity has been given., The effect of a wide range of
possible formation capacities on the formation resistance
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curves, and therefore on the blowout rates, is treated
in Section 9,

The formulas used in the foregoing section are well
established in reservoir engineering practice, They do
not, however, include the effect of such things as tur-
bulent or non-Darcy flow in the formation, partial well
penetration of the formation, zonal damage, wellbore
erosion, and perforation efficiency, They have not been
included in the calculations because there is no way to
evaluate them for blowout wells, and as a matter of fact,
their evaluation is often difficult with normal pro-
ducing wells, The effect of the first three is always
to increase formation resistance, that is to reduce the
flow rates below those calculated without their consi-
deration, Their individual or combined effects may in-
crease the formation resistance appreciably., Wellbore
erosion, on the other hand will decrease the formation
resistance by increasing the effective wellbore radius,
As explained earlier, because the well radius occurs in
a logarithm term, its effect on the calculated resis-
tance curves is greatly attenuated. Perforation effi-
ciencies are believed more usually to increase formation
resistances, i.e., have the effect of a well bore radius
smaller than the inside diameter of the casing. Even in
the best of cases however, perforation does not reduce
formation resistance appreciably, i.e., increase the
effective well bore radius.

A discussion of the factors mentioned in the pre-
ceding paragraph is found in Ref, 7.6, In the esti-
mation of well blowout rates it is recommended that con-
sideration of these factors be included as part of
the effect of formation capacity, to be discussed in
Section 9,
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SECTION 8
FLOW STRING RESISTANCE

8,1 Introduction

The computation of formation and flow gstring re-
sistances was outlined in Sec. 7.l along with a brief
description of their use to estimate gas blowout rates.
Section 7 covered the calculation of formation resis-
tance curves for a variety of reservoir conditions, and
this section will cover the calculation of flow string
resisfance curves.

Flow string resistance curves are calculated using
appropriate formulas for the flow of gas through pipes,
annuli, etc. by assuming a flow rate and a surface
flowing pressure, usually atmospheric for most blowouts.,
The flowing bottom hole pressure is then calculated for
this flow rate and for a range of other assumed flow
rates, A plot of the flo% raties versus the flowing
bottom hole pressures 1is ﬁhe flow string resistance
curve, ’

Calculation of the bottom hole pressure required to
achieve a given flow ratefin a gas well is accomplished
by applying the general energy equation over the flow
path, For a flowing gas 'well the bottom hole pressure
can be expressed as the sum of the surface pressure and
three integrals evaluated over the flow path, or

P, = Py * T%Z JpdZ + fdpf + Tétg Sovdv (8.1)
where:

pw - bottom hole pressure, psia

Py = surface pressure, psia

P = pressure loss due to friction, psia

0o = gas density, 1lbs/ft?®

7 = elevation above reference level, feet

v = velocity of gas, ft/sec

g = acceleration due tc gravity, ft/sec?

The first integral term in Eg. (8.1) accounts for
changes in pressure due to changes in potential energy
along the flow path. The second is the change in pres-
sure over the flow path due to friction, The third
accounts for changes in pressure due to changes in ki-
netic energy along the flow path.

e s
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Numerous equations have been developed by inte-
grating the general energy equation over flow paths
cf constant cross-section, The forms of these equa~
tions differ significantly because of various sim-
plifying assumptions that were necessary in order to
perform the integrations. Two of the integrated forms
of the general energy equation in common use are those
presented by Poettmann, (Ref. 8.1) and by Cullender
and Smith (Ref, 8,2), However, with the use of modern,
high-speed cemputers numerical integration of the basic
terms in the general energy equation can be easily
accomplished, This approach is recommended because it
is more readily understood and offers greater flexi=-
bility than the integrated forms of the general energy
equation,

8.2 Potential Energy Term

The change in pressure due to the change in poten-
tial energy over a flow path is:

1
(Ap)g = 17l edz (8.2)

If Eq. (8.2) is evaluated over a flow path length short
enough to assume that the gas density remains constant,
it can be shown that:

0.0188 G cos ¢ AL P

(Ap)g = T = (8.3)

where:

= gas specific gravity (Air = 1) dimensionless

= deviation of the flow path from the vertical,
degrees

AL = flow path length, feet

P = average pressure in length AL, psia

T = average temperature in length AL, degrees
Rankine

z = gas deviation factor at p & T, dimensionless

8.3 Friction Ternm

The change in pressure due to viscous effects is
a measure of the mechanical energy transformed into




S

&

g o

-63-

heat by frictional resistance. This change due to fric-
tional resistance over the flow path is:

(Ap)e = fdpf (8.4)

If Eq. (8.4) is integrated over a flow path length
short enough to assume that the gas density remains con-
stant, it can be shown that:

GTz Q2
(Ap)f = 0,0000316 F 5 B2 (8.5)
where:
F - a dimensionless factor that is dependent on

the flow geometry.

Q = the flow rate in MMSCF/D at standard condi=-
tions of 14,7 psia and 60°F,

A = cross-sectional area, sq ft.

In the use of Eq. (8.5) the flow path should be divided
into segments such that the pressure drop across a seg-
ment does not exceed ten percent of the upstream pres-
sure with a minimum value of 10 psi. The determination
of the dimensionless factor F is discussed below for a
variety of flow geometries.

Circular Pipe Flow

For flow, through a circular pipe the factor F can
be expressed as h

F = f(AL/D) (8.,6)

where f is a dimensionless friction factor and D is
the internal pipe diameter in feet. For completely
turbulent flow or in the transition zone between tur-
bulent and laminar flow, the friction factor f can be
computed using the Colebrook equation (Ref, 8.3),

= 2 log10[00269 ‘E':' + -—&2]

(8,.7)
D Re VT

éﬂw

where e is the absolute roughness in feet and Re is
Reynold's Number, dimensionless., The Reynolds Number
can be computed from




-64—

(*#°8 °goy ‘euea)y aeq1y) °moTy odrd 40J §J010BJ UOT3OTJ °T°8 °*I14

iy
a . a ———=U3quny spjoukay - ?
500000 = 5 _Sﬁu.w. da(g quny spjoudsy - 2y
018 96 ¢ m/»N 018 96 v ¢ ¢ 008 96 v ¢ 7 f08 896 v £ ¢ 018 95 v £ 7 01 '
10000° 1] 28 800
NN
5 KaRa 600°
he I ~ 10
50000° o il RN
[~ ~ e
1000 F - LTS N
/r .l.l’[ - ™
2000° I NN o5
IrV [/l [I]l QAQ¢ .
. Ea AN\ 510
%000 = Sam N s
9000° . N K
" > sive
SR e e N - N
i T T S eSS \ 0
//Wll R \
a_ = 5 NS \
> - = T RRARR 520
2, 3 |y
ssauy3noy oo’ s =S N iy = Jojey
3ANR Y AN . =0 W £ wogouy
900° ] .
800" = oA \= I
AN o e S0 e N \>
10 ] -_ \%
I'“I N W b0
810 - = PPN —
. ] h N A\
a0 = N ™ - —— 50
1
- X
o
0 NS 90
b e
III.‘
. = > & iy
50 e
- S3did HONOY ‘IDNITINGANL 31374W0D »\t-{ INOZ DL l«INOZ =<3 .
NOILISNY 8 I LT T YN IWY A G
{ PDvowLd 60°
- INOZ INIINBUAL »TTTT T
] O T L] I'o




i

id

o

¥)

J

¥

-65-

e = 1684 — (808)

where p is the gas viscosity in centipoises at pre-
vailing temperature and pressure and Q is the flow rate
in MMSCF/D. Equation (8.7) has been solved for the fric-
tion factor f over a wide range of the parameters.

The results have been plotted and are shown in Fig. 8.1
which can be used to determine the friction factor for
any set of flow parameters,

Annular Flow

For flow through an annulus an equivalent diameter
is computed for the annulus using the "hydraulic radius"”
concept, The equivalent diameter for an annulus 1s:

D =D -D. (8.9)

where De, Dy and Di are the eguivalent, outer and inner
diameters, respectively, expressed in feet, Equation
(8.5) can be used to compute pressure changes that occur
during annular flow, The factor, F, 1is:

F =f (AL/De) (8.,10)
The cross sectional area is calculated by:
. 2_p 2
L = Tr(DO Di )/ 4 (8,11)

The absolute roughness of the annulus can be determined
from Ref. 8.5,

) (8.,12)

where €., €, and €; are the absolute roughness in feet
for the annulus, outer wall and inner wall, respectively,
The relative roughness to be used in Eq. (8.7) or

Fig, 8.1 for e€/D for determining the friction factor f
for annular flow is:

Relative Roughness = €_/D, (8,13)
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Fig., 8.2, Net expansion factors for flow of gases
to large flow areas, (Af'ter Crane, Ref, 8.4,)

Flow Through Valves and Fittings

For flow through valves and fittings the factor,
F, is:

F = K/Y2 (8.14)
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where K is a dimensionless resistance coefficient for a
specific valve or fitting and Y a net expansion factor,
also dimensicnless.

The resistance coefficient, K, for valves and fit-
tings must be determined from flow tegts. This informa-
tion is usually available from the manufacturer of the
valve or fitting. The net expansion factor, Y, compen-
sates for the changes in fluid properties due to expan-
sion of the fluid caused by a sudden change in pressure.
Net expansion factors can be obtained from Fig, 8.2,

Other Resistances to Flow

Tn addition to the resistances of valves and fit-
tings, discussed above, there are changes in pressure
due to sudden enlargement and sudden contraction.
Also, when a fluid enters or leaves an open end pipe,
there are entrance and exit resistances. The changes
in pressure for these conditions can be computed using
Eqs. (8.5) and (8.14). Expansion factors Y can be ob~
tained from Fig., 8.2 and resistance coefficients K
can be obtained from Fig. 8.3. Note that the values
for the resistance coefficient K given in Fig. 8.3 for
sudden enlargement or sudden contraction are based on
velocity in the smaller pipe.

8.4 Kinetic Energy Term

Ordinarily, in problems involving flow of compres-
sible filuids in a pipe, the change in pressure due to
changes in kinetic energy are neglected, The justifi-
cation for this is that the kinetic energy term is
usually small compared to the viscous effects term,

The exception is when flow is taking place through a
nozzle or orifice, The equation for computing changes
in pressure due to flow through a nozzle or orifice is:

(8p) 5 = 1,049 Thu yigr 5 O° (8.15)
0 i

where (Ap); is the difference in psi between the upstream
and downstream pressures, Pi1 is the upstream pressure,

d, is the throat diameter of the nozzle or orifice in
inches and C is a dimensionless nozzle or orifice co-
efficient, Q as elsewhere in this section is in MMSCF/D.
Values for flow coefficients, C, can be obtained from
Fig, 8.4 and values for net expansion factors can be ob-
tained from Fig., 8.5. The solution of Eq. {(8.15) re-~
quires an iterative procedure as will be illustrated in
the example calculation.
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Crane, Ref. 8.4),

8.5 Limiting Flow of Compressible Fluids

Implicit in Eq. (8.5) and (8.15) for computing pres-
sure changes due to viscous effects and kinetic energy
changes is the gas velocity v, The gas veloclity can be
related to the gas flow rate Q in MMSCF/D at standard
conditions of 14.7 psia and 60°F by:

_ 0T =z
v = 00329-17 7 (8,16)
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However, the velocity cannot exceed the sonic velocity
vy of the fluid, which is given by:

vy = 41,43

05
Ly (8.17)

where k is the ratio of the specific heat at constant
pressure to that at constant volume, dimensionless.

The pressure Pg at the point in the flow path where so-
nic velocity is reached can be computed by equating
Egs. (8.16) and (8.17). This equality can be solved to
obtain a formula for p,, or:

0.00789 Q rGTz 1%
Pg * A [ K ]

(8.18)

The point at which sonic velocity occurs in a flow system
is usually in a nozzle, an orifice, a valve or fitting,

a sudden contraction, or where the system exits to a

much larger flow area, e.g., to the atmosphere.

Ratios of pressure drop to upstream pressure above which
sonic velocity is reached are tabulated in Fig. 8.2.
These apply to valves, fittings sudden contractions and
exits to much larger areas. Limiting values of the ra-
tios of downstream pressure to upstream pressure for
nozzles and Venturi tubes are given in Fig. 8.6.

8.6 Calculation Procedure

The geometry of the flow path in an uncontrolled
gas well can be extremely complex. Flow may be oc~-
curring through the drill string, the annulus, or both,
Several changes in cross sectional area may be present,
and a portion of the well may be inclined significantly
from the vertical. Multiple valves and restrictions
may be present and sonic choking is possible at these
restrictions as well as at the surface, The best cal-
culation procedure to use depends upon the flow geo-
metry involved., However, the recommended basic approach
is as follows:

1., Assume a gas flow rate, Q.

2, Starting with a known pressure P, at location
L,, select a pressure increment Ap. Take Ap
< 10% of Py, with a minimum value of 10 psi,

3., Calculate the average pressure and average
temperature for the increment.
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4., Determine the gas deviation factor, z, and
the gas viscosity, u, at conditions of average
pressure and temperature,

5. Calculate the flowing pressure gradient,
dp/dL, for the increment using Egqs. (8.3)
and (8.5).

6. Calculate the length increment corresponding
to the selected pressure increment,
AL = Ap/(dp/dL).,

7. Set p = P, + ZAp and L = LO + IAL,

8., If ZIAL is less than the total flow path length
repeat the procedure from step 2 using p and
L as the starting pressure and location and
taking Ap < 10% of p with a minimum value of
10 psi, If IAL is greater than the total flow
path length, interpolate between the last two
values of L to obtain the pressure at the end
of the flow path.

9. Assume a new value for the flow rate and repeat
the calculations, Continue until sufficient
data is obtained to define the flow string
resistance curve, i.e., a plot of flow rate
versus flowing bottom hole pressure,

Pressure drops across valves, fittings, or restric-
ticns must be accounted for in the calculation proce-
dure, Also, it will be necessary to check each exit,
valve, fitting or restriction to see if sonic velocity
has been reached. Once the flow rate is high enough
for sonic flow to be achieved at some point, the
starting point for the calculation procedure can be
moved from the surface to that point., The pressure at
the point where sonic velocity has been reached can be
computéd using Eq., (8.17).

8.7 Illustrative Example

As an illustrative example consider a gas blowout
which occurred during drilling operations. The blow-
out occurred when a drill pipe safety valve failed after
the well had kicked. When attempts to stab the Kelly
into the safety wvalve were not successful, the rig per-
sonnel evacuated the rig floor, and the well blew out.

The well geometry associated with the blowout is
shown in Fig. 8.7. Based on the ball position of the
drill pipe safety valve, the area of the opening through
which the gas was blowing was computed to be 1.2 sq in.
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The valve body had a diameter of 3.25 inches. The bit
at the bottom of the drill string contained three 13/32
inch nozzles. ' -

The estimated formation pressure at the time of the
blowout was 8000 psia, based on the mud density while
drilling and an assumed 750 psia underbalance. The es-
timated formation temperature is 250°F (710°R), which
is also assumed to be the gas temperature throughout
the flow string. Figure 8.8 provides values for the gas
deviation factor and viscosity of methane at 250°F, as
functions of pressure.' The ratio of the specific heats
k is taken as 1.3.

8,8 Solution of Illustrative Example

The flowing bottom hole pressure will be computed
at flow rate increments of 10 MMSCF/D, starting with
10 MMSCF/D, until the bottom hole pressure exceeds the
estimated formation pressure, 8000 psia. The gas tem=-
perature is assumed constant over the flow path and .
equal to the estimated bottom hole temperature of 2507F.
Completely turbulent flow is assumed for the start of
all calculations and is verified by computing Reynolds
Numbers where appropriateg

The calculations are made in five steps, to\find
the following:

1, Pressure at the downstream side of the safety
valve, ‘

2, Pressure at the upstream side of the safety

valve,'also the pressure at the top of the
drill pipe,

3, Pressure at the bottom of the drill pipe,
4, Pressure at the bottom of the drill collars,

5. Pressure drop across the bit nozzles, and
then the flowing bottom hole pressure,

Step 1, Surface Pressure

The first step is to obtain a starting pressure, in
this case the downstream pressure at the safety valve,
If flow through the safety valve is subsonic the exit
pressure will be atmospheric. If the flow is sonic the
pressure will be greater than atmospheric. As the re-
sistance coefficient K for the valve is unknown, the
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Fig, 8.7. Sketch showing the well
geometry for the example of Sec., 87,

valve is treated as a square edged crifice whose area is
1.2 square inches whose equivalent throat diameter is

dO = V{4)(1l.2)/1m = 1.24 inches
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Fig, 8.8, Gas deviation factors and visi-
cosities for methane (G = 0.55) at 250°F,

Assuming subsonic flow for which the well head pressure
is atmospheric, taken as 1l4.7 psia, the theoretical ve-
locity computed by Eq. (8.16) 1is

_(0,329)(10)(250+460) 1
- 1,2/144 14.7

= 19,069 ft/sec

But by Eq. (8.17) sonic velocity for methane gas in the
valve is:

_ (1.3)(710)z "% _ 0s5
v, = 41.43 [ g% 7 = 1697 [ 2]"™ ft/sec

As z < 1,0 the maximum velocity through the valve 1s less
than 1697 ft/sec, and as the calculated subsonic value 1is
much larger, 19,069 ft/sec, flow through the valve 1is so-
nic. The pressure at the valve exit can be estimated
using Eq. (8.18).

_ 0.00789x10 [ (0.55
Py = = T.2/144

005
L1100 (2)1 7", 164 = *° psia

Table I shows the solution by iteration using
Fig. 8.8 for values of 1z, to obtain a downstream pres-
sure at the safety valve of 164 psia,
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Table I
Trial Ps  z(Fig.8.8) 164v%
1 14,7 1 164
2 164 Cl 164

Step 2., Upstream Pressure at the Safety Valve

Using a downstream pressure of 164 psia the up-
stream pressure at the safety valve is next computed,
To do this, first calculate the ratio of the orifice
diameter to the pipe diameter as

de/d: = 1.24/3.64 = 0,341

/

From Fig, 8.4 the flow coefficient C of the orifice is
0,603, and using this value in Eq., (8.15) the pressure
drop across the valve is .

(Ap)j = (p1~-164)
(1.049)(0055)(710) 1 _].-_ 102
(1.24)% ° (0.603)2Y2 ° p;°

(py~164)p,; = ﬂ%‘?'}‘

This quadratic equation is solved by iteration as shown
in Table II, using Fig. 8.5 to obtain values for Y.
This gives a value of 360 psia for p1, the pressure just
upstream of 4he valve, at the top of the drill pipe,

Table II
Trial Y(Fig.8.5) P Ap Ab/pa
1 1 315 151 0.48
2 0.84 354 190 0.54
3 0.82 360 196 0.54

4 0.82 360
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Step 3. FPressure at the Bottom of the Drill Pipe

Next total flowing pressure gradient at any point
in the drill string is determined by combining Egs.
(8.,3), (8.5), and (8.6)

Ap _ 0.,0188 G cosd P . . 0000316 f GTz Q2

——— — ————

AL ~ T Z D p i 2

\

From O to 3000 feet, the hole is vertical, cos¢ = 1
and the total gradient is

Ap _ (0.0188)(0.55)(1) P
AL T 710 z
N (0.0000316) (0,55) (710)(10)2 fz
T3.64/7127[ (n) (3.64) /(L)(144)12 p
fz

] -5 D fz
= 1,45%x10 - + 778.982 5

An absolute roughness of 0,00065 inches 1is commonly
used fer drill pipe. This yields a relative roughness of

e/d = 0,00065/3.64 = 0.000179
The Reynolds Number calculated using Eg. (8.8) is

R = (1684)(0.,55)(10) _ 30534
e ~ H (3.64/12) - u

‘The pressure at 3000 feet (measured depth) can be de-
termined by starting with a surface pressure of 360 psia
and numerically integrating down to 3000 feet. The nu-
merical integration is shown in Table II1I,.

‘Table III

p Ap<0.lp pavg Z u Re f Ap/AL AL Depth

360

3 375 0.99 0.0l4 2,181,000 0.0138 0.034 882 0
390 35 405 0.99 0.014 2,181,000 0.0138 0.032 938 882
420 .0 440 0.99 0.014 2,181,000 0,0138 0.031 1290 1820

460 3110
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Interpolating to find the pressure at 3000 ft,

_ 40 _ ;
pBOOO = 460 - 1-—2'-9—6(3110-3000) = 456 psia

From 3000 to 14,000 feet (measured depth) the hole de-
viates 15 degrees from the vertical and the flowing pres-
sure gradlent at any point is given by

Ap - 0\ D fz
T = (1.456x107%)(cos 15%)2 + 778,982 =
= 1.406x107% 2 4 775,982 %f

The pressure at 14,000 feet (measured depth) can
be determined by starting with a pressure of 456 psia
at 3000 feet, and numerically integrating down to
14,000 feet, The numerical integration is shown in
Table IV, Interpolating to find the pressure at 14,000
ft,

B} 20 ) -
P14,000 = 750 - g55 (14,051-14,000) = 749 psia

The pressure drop due to the sudden enlargement at
the top of the collars is computed using Eqs. (8.5) and
(8,15) and Figs, 8,2, 8,3, and 8,8,

Ap = p1~pz = 0.0000316 %Z Ggf %2
Table Ty
p_pS0.1p Pavg 2 u Re f Ap/AL AL Depth
w478 0.99 0.014 2,181,000 0.0138 0.029 1517 3,000
20 50 525 0.99 0.01% 2,181,000 0.0138 0.028 1786 +s517
20 s 577 0.99 0.014 2,181,000 0.0138 0.027 2000 ©:303
0% 60 634 0.99 0.014 2,181,000 0.0138 0.026 2308 8303
% 66 697 0.98 0.014 2,181,000 0.0138 0.025 2640 10,611
730 13,251

20 740 0.98 0,014 2,181,000 0.0138 0.025 800
750 14,051

ot
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(0,0000316)(0.55) (710 {
(P1-T49)P1 = ~F(7)(2,375)2/(4) (144)]

1304 Kz/Y?

#

The diameter ratio is
dy/ds = 2.375/3.64 = 0.652
From Fig. 8.3 the resistance coefficient K is 0,32,

so the expression becomes

(p1-749)p1 = (1304)(0.32)

Hf 9
N

4]

b~
‘_J
.Q
|

This expression is solved by iteration using Figs. 8.2
and 8.8 as shown in Table V to give a value of T49,55
psia, say 750 psia for p &

Table V
Trial z(Fig.8.8) Y(Fig.8.2) D1 Ap Ap/p1
1 1 1 749,56 0.56 0,0007
2 0.98 1 749.55 0.55 0.0007

Step 4. Pressure at the Bottom of the Drill Collars

Proceeding with the pressure change calculations in
the drill collars, the Reynolds Number by Eq. (8.8) is

R = (1684)(0.55)(10) _ 46797

e - u(2.375/12) - u

For an absolute roughness of 0.00065 in and 2,375 in
I.D, for the drill collars, the relative roughness is
0,000274, From 14,000 to 14,388 feet (measured depth)
the flowing pressure gradient in the drill collars is
calculated using Eq. (8.3), (8,5) and (8.6)

A -
22 - 1.406x107% 2 .+ 6587.438 %f




-80-

The pressure at 14,388 feet (measured depth) is
determined by starting with a pressure of 750 psia at
14,000 feet and numerically integrating down to 14,388
feet, The results of these numerical integrations are
shown in Table VI, '

Table VI

p Aps0.1lp pavg z u Ry f Ap/AL AL  Depth
™9 20 760 0.98 0.015 3,119,800 0.0145 0.134 149 L4,000
70 29 780 0.98 0.015 3,119,800 0.0145 0.131 153 141149
790 5 800 0.98 0.015 3,119,800 0.0145 0.128 156 14,302
810 14,458

Interpolating, the pressure at the bottom of the drill
collars is

i (14,458-14
P14,388 = 810 - 22222388006 | 801 psia

Step 5. Pressure Drop Through the Bit Nozzles

The final step is to compute the pressure drop across
the bit, If sonic flow is taking place through the three
13/32 inch nozzles the downstream pressure can be computed
using Eq. (8,18). The area A of the three bit nozzles is

(3)(3.14)(13/32)2
(4)(144)

= 0.0027 ft2

and the downstream pressure for 10 MMSCF/D is

_ (0.00789)(10) [{9:55)(710)zy%*
Pg = (0.0027) (1.3)
by = 506 705

Solving for Py by iteration by = 501 psia,

Because this pressure is less than the actual down-
stream pressure (801 psia) the flow through the nozzles
is subsonic, Since the flow through the nozzles is sub-
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sonic the assumption that sonic flow occurred only at
the safety valve is correct. The pressure drop across
the bit can be computed using EQ. (8.,15) and Figs. 8.4
and 8.5, assuming the flow rate through each nozzle 1is
10/3 MMSCF/D, or

(1.049)(0.55)(710) 1 1 2

from which,

167102
(Ppp=80Ll)pPyy = —¥ZCZ

The diameter ratio

do/d]_z 0

From Fig. 8.4 the flow coefficient C for the nozzles is
0.985, hence

172230 f

-801)p,, = ——gr

This equation is solved by iteration as shown in Table
VII using Fig. 8.5 for values of Y and gives a value of
1028 psia for pressure below the bit, i.e., the flowing
bottom hole pressure.

Bottom Hole Pressures for Other Flow Rates

In order to determine the flow string resistance
curve, the five step calculation procedure is repeated
at incremental values of assumed flow rates and the

Table VII

Trial Y(Fig.8.5) P, AP  AP/DPpy

1 1 977 176 0.18
2 0.89 1015 214 0.21
3 0.87 1023 222 0.22
4 0.86 1028 227 0.22
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flowing bottom hole pressure calculated for each flow
rate. Table VIII gives the calculated pﬁessures on the
upstream side of the safety valve, on the downstrean

side of the bit and finally the bottom hole pressure,
Figure 8.9 is a plot of the flow string resistahce curve
for this example, It indicates a maximum possible flow
rate of 79 MMSCF/D, i.,e. when the flowing bottom hole
pressure is equal to the estimated static formation pres-
sure (8000 psia). There is, of course, a pressure drop
in the formation as the gas flows to the bore hole,

If, for example, the formation pressure drop is 2000 psi,
the blowout rate is about 60 MMSCF/D,

Table VIII

Pressure Upstream Pressure Downstream Bottom Hole

Q of Safety Valve of Bit Pressure
MMSCF /D (psia)r (psia) (psia)
10 360 798 1028
20 725 1505 1984
30 1087 2207 2944
40 / 1450 3010 3969
50 1790 3710 4933
60 2130 4490 5950
70 2497 5277 6953

80 2860 6340 8156

8.9 Critique of Computational Procedure

The three parameters that are not known accurately
in the calculation procedure are the absolute roughness
of the drill pipe, the mean temperature of the flowing
gas, and the gas gravity, To determine the sensitivity
of the computational procedure to changes in these para-
meters, an error analysis was made at a flow rate of
60 MMSCF/D,

If the absolute roughness is taken as 0,0065 inches
instead of 0,00065 inches (a 900% increase) the com~
puted bottom hole pressure is 6844 psia instead of 5950
psia, This is a 15 per cent increase in bottom hole
pressure,

If' the mean temperature is taken as 150°F instead
of 250°F (a 40% decrease) the computed bottom hole
pressure is 5657 psia instead of 5950 psia, This is
a 5 percent decrease in bottom hole pressure, '
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If the gas gravity is taken as 0.7 instead of 0.55
(a 27% increase) the computed bottom hole pressure is
6964 psia instead of 5950 psia. This is a 15 percent
increase in bottom hole pressure.

The above analysis indicates the importance of an
accurate determination of gas gravity. Though not as
important as gas gravity, a reasonably accurate estimate
of the mean temperature is needed. The least important
parameter is the absolute roughness. Any reasonable
estimate of absolute roughness should suffice.

Other factors that can affect the accuracy of the
computational procedure are the presence of water and/or
consensate. The presence of liquid will cause the bot-
tom hole pressure determined using the computational pro-
cedure for a given flow rate to be too low. This means
that the flow string resistance curve of Fig. 7.1 would
shift to the right. Hence, for a given bottom hole pres-
sure, the two-phase flow rate will be less than that for
the case of dry gas.

The difficulty in determining an accurate geometry
of the gas flow path can have a major effect on the
accuracy of the computational procedure. This 1is
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especially troublesome when flow is in the annulug or
downhole tubulars have failed. Every effort should be

made to make an accurate determination of the gas flow
path.

8.10 Conclusions and Recommendations

If an accurate determination of the gas flow path
has been made and reasonably accurate values of absolute
roughness,mean temperature of the flowing gas, and the
gas gravity are available, the computational procedure
presented in this chapter should yield a flow string
resistance that is within 20 percent of the actual
value for a given flow rate. The procedure is very te-
dious and time consuming and should be programmed for
use on a high-speed digital computer.
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SECTION 9
CROSS PLOTS OF FORMATION
AND FLOW STRING RESISTANCES

9.1 Introduction

The methods for calculating formation and flow
string resistances have been discussed in Sections 7
and 8, respectively, where it was shown that crossplots
of these two curves can be used to estimate blowout
rates., It was pointed out in Sec, T.4 that in most
cases the major cause for uncertainty in the formation
resistance curves was caused by uncertainties in forma-
tion permeability and thickness. The product of per-
meability and formation thickness is called formation

capacity, or simply capacity. It is usually expressed

Th units of millidarcy-feet (md-ft), In this section
special consideration is given to the effect of un-
certainty in formation capacity on estimated blowout
rates,

The theories and calculations of Sections 7 and 8
also provide the insight for the generalizations
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Fig. 9.1. Generalized formation and flow string resistance
curves showing the effects of formation capacity and effec-
tive flow string diameter,
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expressed by Fig, 9.1, As would be expected, maximum
blowout rates occur for higher formation capacities and
larger effective flow string diameters, point A,
Conversely, also to be expected, low formation capa-
cities and small effective flow string diameters cause
lower blowout rates, as at point D,

Figure 9,1 should not be used except for gene-
ralization as indicated above, Instead, for each blow-
out similar curves should be calculated as shown in
Sections 7 and 8,

9.2 Effect of Formation Capacity

The formation resistance curveg of Fig, 9.2 are
based on Eq., (7.2), the steady-state formula for gas
flow, Equations (73), (7.4) and (7.7) may also be
used, as appropriate, Example 9,1 shows the calcula-
tion of a point on the 2000 md~ft formation resistance
curve, i.,e,, 233 MMSCF/D for a flowing bottom hole

FLOW RATE, MMSCF/D
o
o

s OO O ~N®DO

2 7'\\\
10 N ,
2 3 4 5 6 7 8

BOTTOM HOLE PRESSURE, 1000 PSIA

Fig, 9.2. Formation resistance curves for
Capacities of 100, 200, 500 and 2000 md-f't,
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pressure of 6000 psia.

Example 9.1

Data:

8000 psiar—=-==mm=—=- static reservoir pressure

6000 psia-=-m====m-==~ flowing BHP, assumed

0,024 CPS=mmm—mm————— gas viscosity at 6000 psia &
710°R

T10%Rmmcm e e mm e m reservoir temperature

1ellemmmmrr e e m i m e gas deviation factor at 6000
psia & 710°R

Go0mmmmmm in Fe/Tw

2000 md=fte—mmmwemme—— formation capacity, assumed

(2,0 darcy-ft)

703 kh(pez-p 2)

W
q =
sc uTz ln(re/rw)
_ 703%2.,0x%(8000%-6000%)
dg¢ ® T 0,024x710x1.11x9
q . = 233 MMSCE/D

The flow string resistance curve of fig. 9,2 is
the one calculated for the base condition of the example
of Secs. (8.7) and (8.8) and shown in Fig. 8,9, Because
of the small uncertainty in the flow string resistance
curve, at least with respect to the large uncertainty
in the formation resistance curve, only one flow string
resistance curve is shown in Fig. 9.2,

Figure 9.2 shows the uncertainty in the estimated
blowout rate caused by uncertainty in the formation ca-~
pacity. However, 1t is noted in this example that a
twenty-fold range in formation capacity (100 to 2000
md-ft) causes only a little more than a two-fold change
in the blowout rate, i.e., from 72 MMSCF/D for 2000
md-ft to 32 MMSCF/D for 100 md-ft. In many, if not
most cases, the uncertainty in the formation capacity
should be considerably less than a twenty~-fold range,
certainly where there are producing wells in the reser-
voir, drilled either prior to or after the blowout,
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Figure 9,3 is a crogs-plot of the data of Fig., 9.2,
and further illustrates the effect of formation capa~-
city in the estimated blowout rate, for a particular
flow string resistance curve,

9.3 Cratered Wells and Underwater Blowouts

Of the several methods presented only that of cross-
plotting calculated formation and flow string resis-
tances does not depend upcon some sort(s) of measure-
ment(s). This method is therefore applicable to cratered
wells and underwater blowouts but with the additional
uncertainty in the pressure at the outlet end of the
flow string, now no longer atmospheric, Use of the me-
thod assuming atmospheric Pressure at the outlet will
provide estimates of the maximum flow rate. Also, as
explained below,considerable increases in outlet pres-
sure above atmospheric pressure cause relatively small
reductions in the flow rates,

For gas flow in vertical pipes Smith's formula
(Ref. 9.1) may be expressed as

S
dge = CIp,%-ep 219 ettt a(9.1)
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The following application of EQ. (9.1) will serve to
define its terms and units.

Data:
X = 8000
sure
Py = 4000
T = 620°
flow
z = 1.00,

feet, elevation difference between pres-
points P and Py

psia, external reservoir pressure

Rankine, average temperature in the
string.

average gas deviation factor for gas

in the flow string.

G = 0.70, gas specific gravity {air = 1).

S = 0.0375 G X/T z
- 0.0375 x 0.70 x 8000/620 x 1.00

- 0.34 and e> = 2.718%% = 1,40
Case 1 e 4000 psia
w 3000 psia, flowing bottom hole pressure
o ° 14.7 psia, flow string outlet pressure
Ao * C[30002- 1.40 x 14,7A1°°
sc 3000 C
and for Py = 1,000 psia
Ao = C[30002- 1.40 x 10002%1°%°
Age * 2757 C
Flow Reduction = 30030602757 x 100 = 8%
Case IT e = 4000 psia
w 2000 psia
o ° 14.7 psia
A o = C[2000% - 1.40 x 14.7%21°%°
sc °© 2000 C
and for P, = 700 psia
d o = C[20002 - 1.40 x 700%1°%°
Ggc = 1920 ° 2000 - 1820
Flow Reduction = = 9%

The above

2000

example illustrates the relatively small

effect a substantial increase in outlet pressure has on

the flow rate.

It is noted that a blowout from a sea

floor assembly at a depth of 1500 feet has an outlet pres-
sure near 700 psia. For a more precise evaluation of the
effect of outlet pressure on flow rate, the method of Sec-
tion 8 should be used.
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SECTION 10
SUGGESTIONS FOR FURTHER INVESTIGATION

10.1 Introduction

The foregoing sections have presented the state
of the art for determining gas flow rates and vented
volumes during blowouts. Such presentations naturally
evoke thought on further work which might improve the
determinations. Suggestions for further work are of
two kinds: those which seek to improve or refine cur-
rent technology and those which propose new technology,
either innovative or adapted from other areas of
technology.

All of the methods presented in this report have
been developed for calculations on engineering problems
other than the blowout problem, and have therefore
received periodic improvement and refinement. In any
event the precision of these methods as applicable to
the gas well blowout problem is more than adegquate
because of the complex nature of the problem and be-
cause of the unavailability and/or imprecision of some
of the data. Therefore, improvement in the determi-
nation of vented gas volumes lies in the development
of new technology.

10.2 Suggestions for New Technology

Among the suggestions received or conceived during
these investigations there are four which appear to
merit further consideration. No claim is made for an
in-depth look into the feasibility of these suggested
methods, which are briefly discussed in the fecllowing.

10.2.1 Heat Flux

Where blowing gas wells have been ignited,
assuming complete combustion, the heat flux from the
well is the product of the gas flow rate and the
heating value of the gas. If the heat flux can be
measured, in BTU/day for example, then by dividing
into it the measured or estimated heating value of
the gas, in BTU/SCF, the flow rate in SCF/day is
obtained.

The heat flux is a combination of radiation and
convection. It is possible that aerial surveys above
and around the burning plume using suitable measuring
devices could provide data for determining the total
heat flux. To handle the problem of incomplete
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combustion it is suggested that suitably taken samples
can be analyzed for carbon, carbon monoxide, carbon
dioxide and hydrocarbons.

The most attractive feature of this proposed
method is that it can be applied to all burning gas
wells and, more important, it does not require opera-,
tions at or near the well location. It is therefore
of interest for offshore blowouts where operations at
or near the wellhead are usually precluded.

10.2.2 Bullet Trajectory

A suggestion of the possible use of bullet tra-
jectory was received from the Research Program, Branch
of Marine 0il and Gas Operations of the Geological
Survey. The basic idea is similar to that of esti-
mating the blowout rate from the deflection of a sledge
hammer passed through the flow stream (Section 1.2).

In this proposed method, the basic measurement
would by the angular deflection of a bullet of known
velocity when fired through the center of the flow
stream. Although some experimentation might be re-
guired to develop this method, it is likely that there
is a great deal in the relevant literature which would
shed considerable light on this measurement.

This method is also attractive in that it does
not require operations at or very near the well head.
Although apparently less adaptable to offshore gas,
blowouts than those on land, innovative technology
might prove otherwise.

10.2.3 Other Measurement Technology

Consideration has been given to other measurement
technology which involve the reaction of a sensing
element placed in the flow stream. This idea envisions,
for example, a heavy yoke containing a wire or rod
which could be placed in the flow stream on the end of
long shaft attached to a piece of heavy equipment such
as a bulldozer.

Although this proposed method involves operations
near the blowing well, presumably measurements would
not take very much time. For offshore blowouts the
method would be limited to control measures in which
there is a barge or platform from which to operate
a bulldozer.
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10.2.4 1Indirect Measurements

It is suggested that there are more or less pre-
cise correlations between the size and shape of 3
burning gas plume and its rate of flow. Other corre-
lations are believed to exist between the flow rate
and the sonic emissions at the well, i.e., the sound
level in decibels and/or the frequency distribution
of the sound. A third suggestion is a correlation
between the flow rate and the air velocity and/or
pressure distribution in the vicinity of a blowing well.

Unlike the method suggested in Sec. 10.2.3, these
indirect methods do not involve the insertion of a de-
vice into the flow stream. However, although suitable
measurement equipment {(photography, sound meters, ane-
mometers,. pressure sensors) exist, considerable effort
is anticipated in establishing the necessary corre-
lations, assuming reasonably reliable ones do exist.

10.3 Gas —Condensate and 0il Well Blowouts

It is implicit in this report that the methods
presented apply only to dry gas production, i.e.,
that in which no liquid hydrocarbon phase develops
prior to entering the atmosphere. Neither does it
apply to dry gas accompanied by water production.

If the methods are used for gas—condensate blow-
outs or gas and gas—condensate blowouts accompanied
by water production, the calculated rates and vented
volumes will be larger than actual. Of course, the
methods do not apply to oil well blowouts.

It is suggested that these investigations be
extended to include gas—condensate and o0il well
blowouts.
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